tìm tất cả các số nguyên dương n đê n+13/n-1; 18n+3/21n+7 là phân số tồi giản
Tìm tất cả các số nguyên dương n sao cho tất cả các số n+1, n+5, n+7, n+13, n+17, n+25, n+37 đều là các số nguyên tố.
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
Tìm tất cả các số nguyên dương n sao cho: n+1; n+5; n+7; n+13; n+17; n+25; n+37 đều là các số nguyên tố.
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
**** mik nha
n+1;n+5;n+7;n+13;n+17;n+25;n+37.
cách làm:
n+7=n+7.1
n+1=(n+1)+7.0
n+37=(n+2)+7.5
n+17=(n+3)+7.2
n+25=(n+40)+7.3
n+5=(n+5)+7.0
n+13=(n+6)+7.1
các số khi chia cho 7 sẽ có 7 số dư khác nhau
==>trong các số trên có ít nhất 1 số chia hết cho 7
các số ,n+7,n+13,n+17,n+25,n+37 đều lớn hơn 7 néu chúng chia hết cho 7 thì đó là các hợp số ==> loại
==>n+1 hoặc n+5 chia hết cho 7
+trường hợp 1
n+1=7==>n=6,khi đó các số đều là SNT
trường hợp 2
n+5=7==>n=2 khi đó n+7=9 không phải là SNT nên loại vậy n=6
hog phải chép mạng đâu nha tui tự làm mình viết hơi nhiều bạn thông cảm
Câu 5 ( 0,5 đ )
Tìm tất cả các số nguyên dương n , sao cho tất cả các số n + 1 , n + 5 , n + 7 , n + 13 , n + 17 , n + 25 , n + 37 đều là các số nguyên tố ?
6" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">>2" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n=2" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n+7=9" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n=4" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n+5=9" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n=6" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">7" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">7" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml"> số đã cho có số chia hết cho . Thật thế số đã cho khi chia cho có cùng số dư với số mà trong số tự nhiên liên tiếp có số chia hết cho .
Với trong số đã cho có số chia hết cho và nên là hợp số.
⇒" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml"> Số duy nhất thỏa mãn là
Xem thêm tại đây nhé bạn : Tìm số n nguyên dương sao cho tất cả các số n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là số nguyên tố - Số học - Diễn đàn Toán học
Ta thấy: n phải là số chẵn vì trong dãy có phần dư của n là số lẻ (nếu là số lẻ thì các số trên chẵn ra hợp số)
Mà số nguyên tố chẵn duy nhất là 2 nên n = 2
Thay n = 2, ta có: n + 7 = 2 + 7 = 9 (loại vì là hợp số)
+) Với n = 4
Ta có: n + 5 = 4 + 5 = 9 (loại vì là hợp số)
+) Với n = 6
Với n = 6 thì tất cả các số trên đều là số nguyên tố (tm)
Theo nguyên lí Dirichle thì trong một phép chia cho 7 thì có nhiều nhất 6 số dư
Vậy ta dễ chứng minh để loại hết các số lớn hơn 6
Vậy n = 6 là nghiệm duy nhất cần tìm.
Tìm tất cả các số nguyên n sao cho tất cả các số n+ 1 ; n + 5 ; n + 7 ; n + 13 ; n + 17 ; n + 25 ; n + 37 đều là các số nguyên tố
n=2 để n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là các số nguyên tố
Bài 1 Cho A=1-7+13-19+25-31+....Biết A có 20 số hạng.Tính giá trị của biểu thức A
Bài 2 Cho biểu thức B=n+4 / n-3
a,Số nguyên n thỏa mãn điều gì để B là phân số?
b,Tìm tất cả các số nguyên dương n để B có giá trị là số nguyên
c,Tìm tất cả các số nguyên n để B có giá trị bé hơn 0
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Bài 1 :
Số hạng thứ 20 của biểu thức A là : 1+(20-1).6=115
Ta có biểu thức :
A=1-7+13-19+25-31+...+109-115
=(1-7)+(13-19)+(25-31)+...+(109-115) (có tất cả 10 cặp)
=(-6)+(-6)+(-6)+...+(-6)
=(-6).10=-60
Vậy giá trị của biểu thức A là -60.
Chúc bạn học tốt!
#Huyền#
Tìm tất cả các số nguyên n sao cho tất cả các số n+ 1 ; n + 5 ; n + 7 ; n + 13 ; n + 17 ; n + 25 ; n + 37 đều là các số nguyên tố
Nếu các số nguyên n bằng 0 tại;n+1;n+5;n+13;n+17;n+25;n+37,thì ta có ;
0+1;0+5;0+7;0+13;0+17;0+25;0+37[1;5;7;13;17;25;37]
Mà 1;5;7;13;17;25;37 chính là các nguyên tố
Suy ra tat ca cac so nguyên n=o thì tất cả các số n+1;n+5;n+7;n+13;n+17n;n+25;n+37 đều là các số nguyên tố
[nếu bài của mình đúng hay tích để nhé]
(n+1=n+5+n+7) + ( n+13+n+17+n+25) +37
n=(1+5+7+13+17+25)+37
n=68+37
n= tu tinh not nhe ban
với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó .Chẳng hạn d(2018) = 4 vì 2018 có và chỉ có 4 ước Nguyên Dương là 1;2;1009; 2018 và s (2018) = 1 + 2 + 1009 + 2018 = 3030 Tìm tất cả các số nguyên dương x sao cho s(x).d(x)= 96
Vào đây tham khảo nha ! : Câu hỏi của Phạm Chí Cường - Toán lớp 6 | Học trực tuyến
Với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó. Ví dụ, d(2018) = 4 vì 2018 có (và chỉ có) 4 ước nguyên dương là 1; 2; 1009; 2018 và s(2018) = 1 + 2 + 1009 + 2018 = 3030. Tìm tất cả các số nguyên dương x sao cho s(x) . d(x) = 96
tìm tất cả các số nguyên dương sao cho n^2015 +n+1 là 1 số nguyên tố
Với n nguyên dương.
Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)
Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)
và \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)
=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)
=> \(A⋮n^2+n+1\)
Theo bài ra: A là số nguyên tố
=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương
Vậy n=1