Tìm x, y:
\(\frac{x}{2}=\frac{y+4}{8}\)và xy= 8
Giải ra mk tick!!!
Tìm x, y:
\(\frac{2x+1}{3}=\frac{y+5}{2}\) và xy=4
Giải đi mk tick
TÌM XY BIẾT
A,\(\frac{x}{4}=\frac{y}{7}\) và x.y = 142
B,\(\frac{x}{2}=\frac{y}{5}\) và x+y=-21
C, 7x = 3y và x-y = 16
D, \(\frac{x}{3}=\frac{y}{8}\) và x + y = -22
ai đúng tick
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)(1)
Sửa : xy = 112 (2)
Thay (1) vào (2) ta có
4k.7k = 112
=> 28k2 = 112
=> k2 = 4
=> k = \(\pm\)2
Khi k = 2 => x = 8 ; y = 14
Khi k = -2 => x = -8 ; y = -14
Vậy các cặp (x;y) thỏa mãn bài toán là (8;14) ; (-8;-14)
b) Có : a + b = -21
Ta có \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)(dãy tỉ số bằng nhau)
=> x = -6 ; y = - 15
c) Ta có x - y = 16
Lại có : \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)(dãy tỉ số bằng nhau)
=> x = -12 ; y = - 28
d) Ta có x + y = - 22
Lại có \(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=2\)
=> x = -6 ; y = -16
a. Sửa đề : x/4 = y/7 và x + y = 142
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{142}{11}\)
Suy ra :
+) \(\frac{x}{4}=\frac{142}{11}\Leftrightarrow x=\frac{568}{11}\)
+) \(\frac{y}{7}=\frac{142}{11}\Leftrightarrow y=\frac{994}{11}\)
b. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
Suy ra :
+) \(\frac{x}{2}=-3\Leftrightarrow x=-6\)
+) \(\frac{y}{5}=-3\Leftrightarrow y=-15\)
c. \(7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
Suy ra :
+) \(\frac{x}{3}=-4\Leftrightarrow x=-12\)
+) \(\frac{y}{7}=-4\Leftrightarrow y=-28\)
d. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=-2\)
Suy ra :
+) \(\frac{x}{3}=-2\Leftrightarrow x=-6\)
+) \(\frac{y}{8}=-2\Leftrightarrow y=-16\)
a) đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)
ta có \(x.y=142\)
\(\Leftrightarrow4k.7k=142\)
\(\Leftrightarrow k^228=142\)
số lỗi :>
b)
theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=-\frac{21}{7}=-3\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{5}=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{cases}}\)
c) \(7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)và x-y=16
theo tính chất dãy tỉ số bằng nhau có
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=-4\\\frac{y}{7}=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{cases}}\)
d) theo tính chất dãy tỉ số bằng nhau có
\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=-\frac{22}{11}=-2\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=-2\\\frac{y}{8}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.\left(-2\right)=-6\\y=8.\left(-2\right)=-16\end{cases}}\)
a) Thu gọn và tìm bậc đa thức A = \(-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3yz-8+\frac{5}{2}x^3yz\)
b) Tính giá trị của A khi x = -1, y = 2, z = 3
Khó quá giải giúp 3 tick
a) dễ mà
\(A=-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3yz-8+5x^3yz\)
\(\Leftrightarrow A=-2x^3yzx^3yz-8\)
Vậy bậc của đa thức là 10
b) dễ thay số vào đa thức đã thu gọn
a)
\(A=-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3tz-8+\frac{5}{2}x^3yz\)
\(A=\left(-\frac{3}{4}xy^2+\frac{3}{4}xy^2\right)+\left(\frac{1}{2}x^3yz-5x^3yz+\frac{5}{2}x^3yz\right)-8\)
\(A=0+\left(-2\right)x^3yz-8\)
\(A=-2x^3yz-8\)
+) Bậc của đa thức trên là 4
b) Thay x = -1 ; y = 2 ; z = 3 vào đa thức trên ta có :
\(A=-2.\left(-1\right)^3.2.3-8\)
\(A=4\)
Vậy giá trị của đa thức A tại x = -1 ; y = 2 ; z = 3 là 4.
Các bn giúp mk bài này nhanh nhé! Mk đag cần gấp:
a,Tìm min của P= \(x^4-8x^3+28x^2-48x+35\)
b, Cho x,y>0 và x+y=6. Tìm min của Q= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{100}{xy}+xy\)
a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)
\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)
\(=\left(x^2-4x+6\right)^2-1\)
\(=\left[\left(x-2\right)^2+2\right]^2-1\)
\(\ge2^2-1=3\)
Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)
Đẳng thức xảy ra khi \(x=2.\)
b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)
Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)
Dấu bằng xảy ra khi \(x=y=3.\)
Tìm x, y, z biết:
a) \(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\)và x+y-z=69
b) 2x=3y, 5y=72 và 3x+5y-7z=30
c)\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
Ai bt câu nào thì giúp mk nha, mk tick, cảm ơn m pạn trước nhé!
a )
Ta có :
\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)
và \(x+y-z=69\)
ADTCDTSBN , ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)
Vậy ...
b )
Ta có :
\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)
\(\Rightarrow x=14,4.3:2=21,6\)
và \(3x+5y-7z=30\)
Thay vào làm tiếp :
c )
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN )
\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)
\(=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)
Vậy ...
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm x,y,z
a) x:y:x=2:3:4 và x+y-2z=3
b) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x-3y+4z= 62
Giuips mk đi. mk cho 3 tick
THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\hept{\begin{cases}x=4\cdot2=8\\y=3\cdot2=6\\z=9\cdot2=18\end{cases}}\)
từ \(x:y:z=2:3:4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(=\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)
\(=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot1=2\\y=3\cdot1=3\\z=4\cdot1=4\end{cases}}\)
\(a,x:y:z=2:3:4\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y-2z}{2+3-8}=\frac{3}{-3}=-1\)
\(\Rightarrow\frac{x}{2}=-1\Rightarrow x=-2\)
\(\frac{y}{3}=-1\Rightarrow y=-3\)
\(\frac{z}{4}=-1\Leftrightarrow z=-4\)
BÀi tập : Tìm cặp số ( x ; y ) nguyên biết :
a)\(\frac{x}{y}=\frac{6}{8}\)
b) \(\frac{x-1}{-2}=\frac{y}{5}\)
c)\(\frac{y+1}{4}=\frac{X}{-6}\)
d) \(\frac{x+5}{y-7}=\frac{-3}{8}\)
Giải cho mk nhé , trước tết thì mk tick cho , lẹ lên !
Làm sao 2 ẩn mà chỉ có 1 phương trình mà giải đc nhỉ ??
Ta có : \(\frac{6}{8}=\frac{3}{4}\)
\(\frac{x}{y}=\frac{3}{4}\)
\(\Rightarrow4x=3y\)
\(\Rightarrow x=3;y=4\)
8,Thực hiện phép tính
a,\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
b,\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
c,\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
d,\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
e,\(\frac{2x+y}{2x^2-xy}+\frac{16x}{y^2-4x^2}+\frac{2x-y}{2x^2+xy}\)
f,\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
tìm giá trị lớn nhất của M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
ai lm nhanh mk tick cho nha
\(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
Áp dụng BĐT Cauchy : \(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{1}{2}\)
\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{\left(y-4\right).4}}{4y}\le\frac{y-4+4}{4y}=\frac{1}{4}\)
Cộng theo vế : \(M\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)
Vậy ......................................