Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lewandoski
Xem chi tiết
๖ۣbuồn ツ
Xem chi tiết
Xyz OLM
4 tháng 8 2020 lúc 20:32

Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)(1)

Sửa : xy = 112 (2)

Thay (1) vào (2) ta có 

4k.7k = 112

=> 28k2 = 112

=> k2 = 4

=> k = \(\pm\)

Khi k = 2 => x = 8 ; y = 14

Khi k = -2 => x = -8 ; y = -14

Vậy các cặp (x;y) thỏa mãn bài toán là (8;14) ; (-8;-14)

b) Có : a + b = -21

Ta có \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)(dãy tỉ số bằng nhau)

=> x = -6 ; y = - 15

c) Ta có x - y = 16

Lại có : \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)(dãy tỉ số bằng nhau)

=> x = -12 ; y = - 28

d) Ta có x + y = - 22

Lại có \(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=2\)

=> x = -6 ; y = -16

Khách vãng lai đã xóa
Khánh Ngọc
4 tháng 8 2020 lúc 20:35

a. Sửa đề : x/4 = y/7 và x + y = 142

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{142}{11}\)

Suy ra :

+) \(\frac{x}{4}=\frac{142}{11}\Leftrightarrow x=\frac{568}{11}\)

+) \(\frac{y}{7}=\frac{142}{11}\Leftrightarrow y=\frac{994}{11}\)

b. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)

Suy ra :

+) \(\frac{x}{2}=-3\Leftrightarrow x=-6\)

+) \(\frac{y}{5}=-3\Leftrightarrow y=-15\)

c. \(7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

Suy ra :

+) \(\frac{x}{3}=-4\Leftrightarrow x=-12\)

+) \(\frac{y}{7}=-4\Leftrightarrow y=-28\)

d. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=-2\)

Suy ra :

+) \(\frac{x}{3}=-2\Leftrightarrow x=-6\)

+) \(\frac{y}{8}=-2\Leftrightarrow y=-16\)

Khách vãng lai đã xóa
Trí Tiên亗
4 tháng 8 2020 lúc 20:36

a) đặt  \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)

ta có \(x.y=142\)

\(\Leftrightarrow4k.7k=142\)

\(\Leftrightarrow k^228=142\)

số lỗi :>

b)

theo tính chất dãy tỉ số bằng nhau

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=-\frac{21}{7}=-3\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{5}=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{cases}}\)

c) \(7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)và x-y=16

theo tính chất dãy tỉ số bằng nhau có

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=-4\\\frac{y}{7}=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{cases}}\)

d) theo tính chất dãy tỉ số bằng nhau có

\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=-\frac{22}{11}=-2\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=-2\\\frac{y}{8}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3.\left(-2\right)=-6\\y=8.\left(-2\right)=-16\end{cases}}\)

Khách vãng lai đã xóa
❤Firei_Star❤
Xem chi tiết
Kiệt Nguyễn
3 tháng 3 2019 lúc 15:10

a) dễ mà

\(A=-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3yz-8+5x^3yz\)

\(\Leftrightarrow A=-2x^3yzx^3yz-8\)

Vậy bậc của đa thức là 10

b)  dễ  thay số vào đa thức đã thu gọn

Nguyễn Việt Hoàng
3 tháng 3 2019 lúc 15:21

a) 

\(A=-\frac{3}{4}xy^2+\frac{1}{2}x^3yz+\frac{3}{4}xy^2-5x^3tz-8+\frac{5}{2}x^3yz\)

\(A=\left(-\frac{3}{4}xy^2+\frac{3}{4}xy^2\right)+\left(\frac{1}{2}x^3yz-5x^3yz+\frac{5}{2}x^3yz\right)-8\)

\(A=0+\left(-2\right)x^3yz-8\)

\(A=-2x^3yz-8\)

+) Bậc của đa thức trên là 4

b) Thay x = -1 ; y = 2 ; z = 3 vào đa thức trên ta có :

\(A=-2.\left(-1\right)^3.2.3-8\)

\(A=4\)

Vậy giá trị của đa thức A tại x = -1 ; y = 2 ; z = 3 là 4.

Kiệt Nguyễn
3 tháng 3 2019 lúc 15:24

mk quen

bac là 4

lộn đơn thức

Bùi Hải Ngọc
Xem chi tiết
Mr Lazy
27 tháng 7 2016 lúc 23:36

a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)

\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)

\(=\left(x^2-4x+6\right)^2-1\)

\(=\left[\left(x-2\right)^2+2\right]^2-1\)

\(\ge2^2-1=3\)

Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)

Đẳng thức xảy ra khi \(x=2.\)

b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)

Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)

Dấu bằng xảy ra khi \(x=y=3.\)

Bùi Hải Ngọc
28 tháng 7 2016 lúc 20:11

Mk camon bn nhiều nha =))

Bi Bi Di
Xem chi tiết
Arima Kousei
6 tháng 7 2018 lúc 19:40

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

Kệ Chúng m T Lợi
2 tháng 9 2018 lúc 14:35

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

anhthu bui nguyen
Xem chi tiết
zZz Cool Kid_new zZz
12 tháng 12 2018 lúc 20:01

THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ:

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow\hept{\begin{cases}x=4\cdot2=8\\y=3\cdot2=6\\z=9\cdot2=18\end{cases}}\)

zZz Cool Kid_new zZz
12 tháng 12 2018 lúc 20:04

từ \(x:y:z=2:3:4\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(=\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)

\(=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot1=2\\y=3\cdot1=3\\z=4\cdot1=4\end{cases}}\)

❤  Hoa ❤
12 tháng 12 2018 lúc 20:05

\(a,x:y:z=2:3:4\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y-2z}{2+3-8}=\frac{3}{-3}=-1\)

\(\Rightarrow\frac{x}{2}=-1\Rightarrow x=-2\)

\(\frac{y}{3}=-1\Rightarrow y=-3\)

\(\frac{z}{4}=-1\Leftrightarrow z=-4\)

Hikami Sumire
Xem chi tiết
Hiếu
13 tháng 2 2018 lúc 21:27

Làm sao 2 ẩn mà chỉ có 1 phương trình mà giải đc nhỉ ??

Hikami Sumire
13 tháng 2 2018 lúc 21:37

Thầy cho bọn tớ thế !

❤Trang_Trang❤💋
14 tháng 2 2018 lúc 8:38

Ta có : \(\frac{6}{8}=\frac{3}{4}\)

\(\frac{x}{y}=\frac{3}{4}\)

\(\Rightarrow4x=3y\)

\(\Rightarrow x=3;y=4\)

Kaijo
Xem chi tiết
Nguyễn Hà Lan Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
23 tháng 10 2016 lúc 9:58

\(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)

Áp dụng BĐT Cauchy : \(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{1}{2}\)

\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{\left(y-4\right).4}}{4y}\le\frac{y-4+4}{4y}=\frac{1}{4}\)

Cộng theo vế : \(M\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)

Vậy ......................................