so sánh :
\(A=\frac{3^{123}+1}{3^{125}+1}\)
\(B=\frac{3^{172}+1}{3^{174}+1}\)
so sánh A và B:
A=\(\frac{3^{123}+1}{3^{125}+1}\)
B=\(\frac{3^{122}+1}{3^{124}+1}\)
Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\)N*)
Ta có:
\(A=\frac{3^{123}+1}{3^{125}+1}< \frac{3^{123}+1+2}{3^{125}+1+2}\)
\(A< \frac{3^{123}+3}{3^{125}+3}\)
\(A< \frac{3.\left(3^{122}+1\right)}{3.\left(3^{124}+1\right)}\)
\(A< \frac{3^{122}+1}{3^{124}+1}=B\)
=> A < B
\(9A=\frac{3^{125}+9}{3^{125}+1}=1+\frac{8}{3^{125}+1}\)
\(9B=\frac{3^{124}+9}{3^{124}+1}=1+\frac{8}{3^{124}+1}\)
Mà 3^125+1>3^124+1 =>\(\frac{8}{3^{125}+1}< \frac{8}{3^{124}+1}\)
Nên A<B
9A=\(\frac{3^{125}+9}{3^{125}+1}\)=\(1+\frac{8}{3^{125}+1}\)
9B=\(\frac{3^{124}+9}{3^{124}+1}\)=\(1+\frac{8}{3^{124}+1}\)
Vì \(\frac{8}{3^{125}+1}< \frac{8}{3^{124}+1}\)\(\Rightarrow9B>9A\)\(\Rightarrow B>A\)
Vậy B>A
so sánh: A= \(\frac{3^{123}+1}{3^{125}+1}\)và B= \(\frac{3^{122}}{3^{124}+1}\)
các bn lm nhanh hộ mik, mik đang cần gấp
\(B=\frac{3^{122}}{3^{124}+1}=\frac{3^{123}}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+3}< \frac{3^{123}+1}{3^{125}+1}=A\)
Do đó \(A>B\).
so sanh
\(A=\frac{3^{123}+1}{3^{125}+1}\)va \(b=\frac{3^{122}+1}{3^{134}+1}\)
Đề đúng là \(B=\frac{3^{122}+1}{3^{124}+1}\)nhé .
Ta có :
\(9A=9.\left(\frac{3^{123}+1}{3^{125}+1}\right)=\frac{3^{125}+9}{3^{125}+1}\)
\(=1+\frac{8}{3^{125}+1}\)
\(9B=9.\left(\frac{3^{122}+1}{3^{124}+1}\right)=\frac{3^{124}+9}{3^{124}+1}\)
\(=1+\frac{8}{3^{124}+1}\)
Dễ thấy \(3^{124}+1< 3^{125}+1\)
\(\Leftrightarrow\frac{8}{3^{125}+1}< \frac{8}{3^{124}+1}\)
\(\Leftrightarrow\frac{8}{3^{125}+1}+1< \frac{8}{3^{124}+1}+1\)
\(\Leftrightarrow A< B\)
Vậy....
SO SÁNH : A = 3^123 +1 / 3^125 + 1 và B = 3^122/ 3^124 + 1
A = \(\dfrac{3^{123}+1}{3^{125}+1}\) Vì 3123 + 1 < 2125 + 1 Nên A = \(\dfrac{3^{123}+1}{3^{125}+1}\)< \(\dfrac{3^{123}+1+2}{3^{125}+1+2}\)
A < \(\dfrac{3^{123}+3}{3^{125}+3}\) = \(\dfrac{3.\left(3^{122}+1\right)}{3.\left(3^{124}+1\right)}\) = \(\dfrac{3^{122}+1}{3^{124}+1}\) = B
Vậy A < B
So sánh :
\(\frac{3^{123}+1}{3^{125}+1}vs\frac{3^{122}}{3^{124}+1}\)
So sánh :
a)\(\frac{2^{2010}+1}{2^{2007}+1}\) và \(\frac{2^{2012}+1}{2^{2009}+1}\)
b)\(\frac{3^{123}+1}{3^{125}+1}\) và \(\frac{3^{122}+1}{3^{124}+1}\)
SO SÁNH A = 3^123 + 1 / 3^125 + 1 và B = 3^122+1 / 3^124+1
SO SÁNH : A = 3^123 +1 / 3^125 + 1 VÀ B = 3^122 + 1 / 3^124 + 1
So Sánh
a)\(A=3^0+3^1+3^2+....+3^{2016}\) và \(B=3^{2017}\)
b)\(A=\frac{2^{2016}+1}{2^{2008}+1}\)và \(B=\frac{2^{2012}+1}{2^{2009}+1}\)
c)\(A=\frac{3^{123}+1}{3^{125}+1}\)và \(B=\frac{3^{122}}{3^{124}+1}\)
d)\(A=2^{30}+3^{20}+4^{30}\)và \(B=3.24^{10}\)
e)\(A=5^{84}\)và \(B=3^{126}\) và \(C=2^{108}\)
GIÚP MÌNH VỚI NHA! ( ^ _ ^ )
\(A=1+3+3^2+3^3+...+3^{2016}\)
\(A=1+3\left(1+3^2+...+3^{2015}\right)\)
\(A=1+3\left(A-3^{2016}\right)\)
\(A=1+3A-3^{2017}\)
\(2A=3^{2017}-1\Rightarrow A=\frac{3^{2017}-1}{2}\)
\(A< B\)