cho E = 1+2+2mũ2+2mũ3+...+2mũ9.
cho s=1+2+2mũ2+2mũ3+.....+2mũ9 và p=5.2mũ0
hãy so sánh s và p
S = 1 + 2 + 22 + 23 +...+ 29
2S = 2 + 22 + 23+...+ 29 + 210
2S - S = 210 - 1
S = 210 - 1
P = 5.20 = 5 < 7 = 23 - 1 < 210 -1 = S
S > P
Chứng minh rằng : 2+2mũ2+2mũ3+...+2mũ8 +2mũ9 chia hết cho 14
Nhanh lên mọi người ơi
2+22+23+....+28+29
=(2+22+23)+....+(27+28+29)
=(2+22+23)+....+26.(2+22+23)
=14+...+26+14
=14.(1+.....+26) \(⋮\)14
Vậy 2+22+23+...+28+29 \(⋮\)14
Chúc bn học tốt
chứng tỏ rằng
a). A = 2+2mũ2+ 2mũ3+ 2mũ4 + ...+ 2mũ9 + 2mũ10 chia hết cho 3
b) A= 2mũ2+ 2mũ4+ 2mũ6+ 2mũ8+ ...+ 2mũ18+ 2mũ20 chia hết cho 5
c) A = 7+ 7mũ2+ 7mũ3+ 7mũ4+ ...+ 7mũ9+ 7mũ10 chia hết cho 8
d) A = 4+ 4mũ2+ 4mũ3+ 4mũ4 + ...+ 4mũ9+ 4mũ10 chia hết cho 5
a) Ta có : A=2+22+23+...+210
=(2+22)+(23+24)+...+(29+210)
=2(1+2)+23(1+2)+...+29(1+2)
=2.3+23.3+...+29.3
Vì 3\(⋮\)3 nên 2.3+23.3+...+29.3\(⋮\)3
hay A\(⋮\)3
Vậy A\(⋮\)3.
b) Ta có : A=22+24+26+...+220
=(22+24)+(26+27)+...+(218+220)
=22(1+22)+26(1+22)+...+218(1+22)
=22.5+26.5+...+218.5
Vì 5\(⋮\)5 nên 22.5+26.5+...+218.5\(⋮\)5
hay A\(⋮\)5
Vậy A\(⋮\)5.
c) Ta có : A=7+72+73+...+710
=(7+72)+(73+74)+...+(79+710)
=7(1+7)+73(1+7)+...+79(1+7)
=7.8+73.8+...+79.8
Mà 8 chia hết cho 8 nên 7.8+73.8+...+79.8 chia hết cho 8
hay A chia hết cho 8
Vậy A chia hết cho 8.
B=1+2mũ3+2mũ6+2mũ9+......+2mũ99
2B=1+2mũ4+2 mũ 5+.......+2 mũ 99 + 2 mũ 100
1B=2/101
S=1+2+2mũ2+2mũ3+....+2mũ2022
\(S=1+2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2022}+2^{2023}\)
trừ vế với vế ta được :
\(2S-S=2^{2023}-1\)
\(\Rightarrow S=2^{2023}-1\)
a) 2mũ1 nhân 5mũ2 nhân 17
b) 2mũ2 + 2mũ3 + 2mũ4
c) 2mũ5 nhân 3 + 2mũ4 : 8 + 50 : 5mũ2
d) 11mũ2 - 10mũ2 - 3mũ2
e) 1mũ3 + 2mũ3 + 3mũ3 + 4mũ3 + 5mũ3
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225
(2^2 + 2) + (2^3 + 2^4) +...........+(2^11 + 1)
= 2. (2+1) + 2^3. (2+1) + ........ + 2^9.(2+1) +(2^11+1)
= 2. 3 + 2^3. 3 + ..... + 2^9. 3 + (2^11 +1)
Vì 3 chia hết cho 3
=> A chia hết cho 3
hãy chứng minh (1 +2 +2mũ2+2mũ3+2mũ4+2mũ5+2mũ6+2mũ7) chia hêt cho 3
đặt A=1+2+2^2+2^3+2^4+2^5+2^6+2^7
2A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8
2A-A=(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8)-(1+2+2^2+1^3+2^4+2^5+2^6+2^7)
A=2^8-1
A=256-1=255
255 chia hết cho 3
nên 1+2+2^2+2^3+2^4+2^5+2^6+2^7 cũng chia hết cho 3
hãy chứng minh (1 +2 +2mũ2+2mũ3+2mũ4+2mũ5+2mũ6+2mũ7) chia hết cho 3
A = 1 + 2 + 22 + 23 + ...+ 26 + 27
= ( 1 + 2) + ( 22 +23 ) +( 24 + 25 ) + ( 26 + 27) '' có tất cả 8 số chia thành 4 cặp nhé ''
=3 + 22. ( 1 + 2) + 24.(1+2) + 26. ( 1 + 2)
= 3 + 22 .3 + 24.3+ 26 .3
= 3. ( 1 +22 + 24 + 26 ) chia hết cho 3.