tìm giá trị nhỏ nhất:
A=x^2+5/x^2-10
(viết dưới dạng P/s tối giảm) ghi cách làm
làm
5. Tìm giá trị nhỏ nhất của B= (x+1)2 + (y+3)2+1
Ai nhanh mk tick cho
ghi rõ cách làm nha
Số 2,1(5) đc viết dưới dạng phân số tối giản là...
Làm ơn ghi cách làm ra giúp mk nhé, càng dễ hiểu càng tốt
\(2,1\left(5\right)=2,1+0,0\left(5\right)=\frac{21}{10}+\frac{5}{90}=\frac{189+5}{90}=\frac{194}{90}=\frac{92}{45}\)
tìm x để biểu thức A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó (viết dưới dạng số thập phân):
A=3.|3x -4| -\(\frac{5}{6}\)
Ta thấy : \(\left|3x-4\right|\ge0\)
\(\Rightarrow3\left|3x-4\right|\ge0\)
\(\Rightarrow3\left|3x-4\right|-\frac{5}{6}\ge-\frac{5}{6}=-0,8\left(3\right)\)
\(\Rightarrow A\ge-0,8\left(3\right)\)
Dấu "=" xảy ra khi \(\left|3x-4\right|=0\Rightarrow3x-4=0\Rightarrow3x=4\Rightarrow x=\frac{4}{3}\)
Vậy \(Min_A=-0,8\left(3\right)\) khi \(x=\frac{4}{3}\)
Số 1(23) đc viết dưới dạng phân số tối giản là...
Làm ơn ghi cách làm ra giúp mk nhé, càng dễ hiểu càng tốt
\(1,\left(23\right)=1+0,\left(23\right)=1+\frac{23}{99}=\frac{122}{99}\)
\(1,\left(23\right)=1+0,\left(23\right)=1+\frac{23}{99}=\frac{99+23}{99}=\frac{122}{99}=\left(\frac{2.61}{3^2.11}\right)\) chi tiết hết cỡ rồi (chỉ để xem tối giản chưa thôi)
Cho hai đại lượng I và II tỉ lệ nghịch với nhau và cùng có giá trị dương, nếu giá trị của đại lượng I tăng 20% thì giá trị tương ứng của đại lượng II giảm đi ...... %
( viết dưới dạng số thập phân, làm tròn đến chữ số thập phân thứ hai )
Toán violympic lớp 7 vòng 11 nha....... làm giúp mình với......... thanh kiu <3<3
Giá trị của đại lượng I tăng 20% => Giá trị của đại lượng I tăng 1,2 lần.
Vì đại lượng I và II tỉ lệ nghịch với nhau.
=> Giá trị đại lượng II giảm 1,2 lần
Giá trị của đại lượng II sau khi giảm đi 1,2 lần là :
1 : 1,2 = 0,8(3) ≈ 0,84 = 84%
Vậy đại lượng II giảm đi :
100% - 84% = 16%
Gọi đại lượng I và II lần lượt là x; y(x; y\geq0)
Đại lượng I tỉ lệ nghịch với đại lượng II \Rightarrow x tỉ lệ nghịch với y \Rightarrow $x.y =a$
Đại lượng I tăng thêm 20%
\Rightarrow 120%x.y=120%a
$\dfrac{6}{5}x.y=\dfrac{6}{5}a$
\Rightarrow $\dfrac{6}{5}x.\dfrac{5}{6}y=a$
\Rightarrow 120%x . 83,(3)%y = a
\Rightarrow Nếu đại lượng I tăng 20% thì đại lượng II = 83,(3)% đại lượng II lúc đầu
\Rightarrow Đại lượng II sẽ phải giảm: 100% - 83,(3)% = 16,(6)%
tìm x;y
S=l x+2 l + l 2y-10 l +1010 đạt giá trị nhỏ nhất. tìm giá trị nhỏ nhất đó
Ta có:I x+2I; I 2y - 10I lớn hơn hoặc bằng 0 vs mọi x
Để S nhỏ nhất thì Ix+2I; I 2y - 10I => x+2 = 0 và 2y-10 = 0 => x=-2 và y=5
Ta thấy |x + 2| ≥ 0 với mọi x
|2y - 10| ≥ 0 với mọi y
=> |x + 2| + |2y - 10| ≥ 0 với mọi x,y
=> |x + 2| + |2y - 10| + 1010 ≥ 1010 với mọi x,y
=> S ≥ 1010 với mọi x,y
Dấu " = " xảy ra
\(\Leftrightarrow\hept{\begin{cases}|x+2|=0\\|2y-10|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Vậy với x = -2 và y = 5 thì S đạt GTNN là 1010.
Tìm giá trị nhỏ nhất của
\(B=\frac{4x+3}{x^2+1}\)
Làm nhanh với giải cả cách làm ra giùm mk với
\(B+1=\frac{4x+3+x^2+1}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}\ge0\Rightarrow B\ge-1\\ \)
GTNN B=-1 khi x=-2
Tìm giá trị nhỏ nhất của biếu thức :
A=|x+5|+2019.
Các bạn nhớ ghi cách trình bày nha
\(A=\left|x+5\right|+2019\)
Vì \(\left|x+5\right|\ge0\)với \(x\in Q\)
nên \(A=\left|x+5\right|+2019\ge2019\)
Dấu ' = ' xảy ra khi x = -5
Vậy giá trị nhỏ nhất của A là 2019 khi x = -5
Giá trị lớn nhất của biểu thức \(A=\frac{\left|x\right|+5}{2\left|x\right|+3}\) là bao nhiêu?
( Nhập kết quả dưới dạng phân số tối giản )
A chắc chắn phải dương, vì cả tử và mẫu đều cùng dấu dương.
Do đó khi 2A lớn nhất thì A cũng lớn nhất.
\(2A=\frac{2\left|x\right|+10}{2\left|x\right|+3}=1+\frac{7}{2\left|x\right|+3}\)
Để 2A lớn nhất thì \(\frac{7}{2\left|x\right|+3}\) lớn nhất. 7 là số nguyên dương nên để phân số này lớn nhất thì 2|x|+3 là số dương bé nhất có thể.
|x| > 0
\(\Rightarrow\)2|x| > 0
\(\Rightarrow\)2|x|+ 3 > 3
\(\Rightarrow2A\) lớn nhất là \(1+\frac{7}{3}=\frac{10}{3}\)
Do đó A lớn nhất là \(\frac{10}{3}:2=\frac{5}{3}\)