Cho:A=1/1x2+1/3x4+....+1/99x100
CMR:7/12<A<5/6
tính ( 1/7 + 1/8 + . . . + 1/12 ) - ( 1/1x2 + 1/3x4 + . . . + 1/ 11x12 )
nhanh lên mình cần gấp
ai nhanh mình tick cho
1/1x2+1/2x3+1/3x4+1/24x25
1/1x2+ 1/2x3+1/3x4+1/24x25
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+....+\dfrac{1}{24\times25}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
\(=1-\dfrac{1}{25}\)
\(=\dfrac{24}{25}\)
C=(1/1x2+1/3x4+..+1/15x20):(1/11+1/12+..+1/20)
#)Giải :
\(C=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{15.20}\right)\div\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)\)
\(C=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\div\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)\)
\(C=\left(1-\frac{1}{20}\right)\div\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)\)
\(C=\frac{19}{20}\div\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)\)
Còn vế kia thì chịu @@
A = \(\dfrac{1}{1x2}+\dfrac{1}{3x4}+\dfrac{1}{5x6}+....+\dfrac{1}{99x100}\)
CM \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(=\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}\right)+\left(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}\right)\)
Ta có:
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) (1)
Lại có:
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\Rightarrow A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\) (2)
Từ (1) và (2) suy ra \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
Cho A=\(\frac{1}{1x2}+\frac{1}{3x4}+\frac{1}{5x6}+....+\frac{1}{99x100}\)
Chứng minh rằng: 7/12<A<5/6
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Do \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{100}\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>25\cdot\frac{1}{80}+25\cdot\frac{1}{100}=\frac{7}{12}\)
và \(A
olm lag kinh đang làm lag thoát ra mất tiêu
-------đề đúng------------
a)1/1x5+1/5x9+1/9x13+1/13x17+1/17x21+1/21x25
b)7/12+7/20+7/30+......+7/380
c)1x2+2x3+3x4+........+20x21
AI NHANH NHẤT MK TÍCH CHO NHA
MK CẦN CỰC GẤP
a) 1/1x5 + ... + 1/21x25
= 4 x (1-1/5 + 1/5 - 1/9 + ... + 1/21 - 1/25)
= 1/4 x (1 - 1/25)
= 1/4 x 24/25
= 6/25
Cho A = \(\frac{1}{1x2}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{99x100}\)
CM \(\frac{7}{12}\) < A < \(\frac{5}{6}\)
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100))
(1/(1x2)/(2x3)/(3x4)):(1/(2x3)/(3x4)/(4x5)):...(1/(97*98)/(98*99)/(99*100
haizzz đáng tiếc tôi muốn ns là: ko bao f và đừng mong chờ OK