Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
oOo tHằNg NgỐk tỰ Kỉ oOo
Xem chi tiết
Mori Ran
30 tháng 12 2015 lúc 13:10

Kẻ HK vuông góc với BC

Xét tam giác BKH và BCD có góc CBD chung;góc HKB=BDC(90o)

=>Tam giác BKH đồng dạng với BDC

=>BK/BD=BH/BC=>BHxBD(1)

+Tương tụ,tma giác CKH đồng dạng với tg CEB

=>CK/CE=CH/BC=>CHxCE=CK(2)

Từ (1) và (2)=>BHxBD+CHxCE=BKxBC+CKxBC=(BC+CK)xBC=BCxBC=BC2

Trang noo
30 tháng 12 2015 lúc 12:57

chtt

Đặng Văn hào
Xem chi tiết
vũ minh
Xem chi tiết
Xem chi tiết
Thanh Tùng DZ
14 tháng 12 2019 lúc 18:14

A B C D E H M

Kẻ HM vuông góc BC ( M thuộc BC )

\(\Delta BHM~\Delta BCD\left(g.g\right)\) \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BD}\Rightarrow BH.BD=BC.BM\)  ( 1 )

\(\Delta CHM~\Delta CBE\left(g.g\right)\Rightarrow\frac{CH}{BC}=\frac{CM}{CE}\Rightarrow CH.CE=BC.CM\)   ( 2 )

Từ ( 1  ) và ( 2 ) \(\Rightarrow BH.BD+CH.CE=BC\left(BM+CM\right)=BC^2\)

Khách vãng lai đã xóa
Hoàng Thị Thanh Thúy
Xem chi tiết
Hyuuga Neji
5 tháng 1 2016 lúc 15:26


Kẻ HF vuông góc với BC, F thuộc BC
Ta chứng minh được tg BHF đồng dạng với tg BCD
=> BH/BC = BF/BD => BH.BD=BC.BF

tg CHF đồng dạng với tg CBE 

=>CH/CB= CF/CE=CB.CF

=>BH.BD+CH.CE=CB.BF=CB.CB=BC2

 

Ngô Tuấn Vũ
Xem chi tiết
Trần Thị Loan
14 tháng 10 2015 lúc 18:13

A B C D E H M

Kẻ HM  | BC 

+) Tam giác BHM đồng dạng với tam giác BCD ( có góc BEH = BDC = 90o; góc CBD chung)

=> BM/ BD = BH/ BC => BM. BC = BH. BD   (1)

+) Tương tự, tam giác CMH đồng dạng với tam giác CEB ( có góc BCE chung ; góc HMC = CEB = 90o)

=> CH/ CB = CM/ CE =>CM .CB =  CH. CE  (2)

Cộng từng vế của (1)(2) => BM.BC + CM.CB = BH.BD + CH .CE => (BM + CM).CB = BH.BD + CH.CE

=> BC= BH.BD + CH.CE 

Vậy...

kurosaki ichigo
14 tháng 10 2015 lúc 18:05

cau hoi tuong tu nha ban

loc do
Xem chi tiết
Trần Thị Loan
6 tháng 8 2015 lúc 15:15

A B C D E H K

Kẻ HK vuông góc với BC

Xét tam giác BKH và BDC có: góc CBD chung; góc HKB = BDC (= 90o)

=> tam giác BKH đồng dạng với BDC (g - g)

=> BK/BD = BH/ BC => BH.BD = BK. BC     (1)

+) Tương tự, tam giác CKH đồng dạng với tam giác  CEB (g - g)

=> CK/ CE = CH/BC => CH . CE = CK.BC    (2)

Từ (1)(2) => BH.BD + CH.CE =  BK.BC + CK. BC = (BK+ CK). BC = BC.BC = BC2 

 

Killer world
Xem chi tiết
Hoàng Thị Lan Hương
27 tháng 7 2017 lúc 14:35

A B C F D E H

Xét \(\Delta BHF\)và \(\Delta BCD\)

có \(\widehat{BEH}=\widehat{BDC}=90^0\)và \(\widehat{DBC}\)chung

\(\Rightarrow\Delta BHF~\Delta BCD\left(g-g\right)\)\(\Rightarrow\frac{BF}{BD}=\frac{BH}{BC}\Rightarrow BF.BC=BH.BD\left(1\right)\)

Xét \(\Delta CFH\)và \(\Delta CEB\)

có \(\widehat{CFH}=\widehat{CEB}=90^0\)và  \(\widehat{ECB}\)chung 

\(\Rightarrow\Delta CFH~\Delta CEB\left(g-g\right)\)\(\Rightarrow\frac{CH}{CB}=\frac{CF}{CE}\Rightarrow CB.CF=CH.CE\left(2\right)\)

Cộng (1) với (2) ta được \(BF.BC+CF.CB=BH.HD+CH.CE\)

\(\Rightarrow\left(BF+CF\right)CB=BH.BD+CH.CE\)hay \(BH.BD+CH.CE=BC^2\left(đpcm\right)\)

Vậy ....

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 4 2018 lúc 10:33

Gợi ý: Gọi , chứng minh được AK ^ BC.

Áp dụng cách làm tương tự 4A suy ra ĐPCM

Huệ Nguyễn
31 tháng 3 2023 lúc 19:16

Trã lời dùm