Cho a,b,c là các số ko âm
a)C/m a^2+b^2>2ab
b)Áp dụng,c/m a^2+1/a^2>2(a>0)
cho a;b;c là các số thực dương. CMR (a^2/b+c) + (b^2/c+a) + (c^2/a+b) >= (a+b+c)/2 ? (áp dụng BĐT bunhiacopski)
Áp dụng BDT Bunhiacopxki:
\(\left[\left(\sqrt{x+y}\right)^2+\left(\sqrt{y+z}\right)^2+\left(\sqrt{x+z}\right)^2\right]\left[\frac{x^2}{\left(\sqrt{x+y}\right)^2}+\frac{y^2}{\left(\sqrt{y+z}\right)^2}+\frac{z^2}{\left(\sqrt{x+z}\right)^2}\right]\)\(\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(x+y+z\right)\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{x+z}\ge\frac{x+y+z}{2}\)
Cho đa thức bậc hai: f(x) = ax2 + bx + c, trong đó a, b, c là những hằng số.
a) Biết a + b + c = 0. Chứng minh f(x) có một nghiệm là x = 1, áp dụng để tìm các nghiệm của đa thức f(x) = 8x2 – 6x – 2.
b) Biết a – b + c = 0. Chứng minh f(x) có một nghiệm là x = –1, áp dụng để tìm các nghiệm của đa thức f(x) = 7x2 + 11x + 4
Từ a+b+c=0 ta có b= -(a+c) (*)
Thay (*) vào pt bậc 2 ta có
ax^2 - (a+c)x + c = 0
ax^2 - ax -cx + c = 0
ax(x -1)- c(x-1) = 0
(x -1)(ax-c) = 0
Vậy x-1=0 hay x=1
ax-c =0 hay x= c/a
Cho a,b,c,d là các số thực. Chứng minh rằng a^2+b^2>=2ab(1). Áp dụng chứng minh các bất đẳng thức sau
a) (a^2+1)(b^2+1)(c^2+1)>=8abc
b) (a^2+4)(b^2+4)(c^2+4)(d^2+4)>=256abcd
(a^2+b^2)/2>=ab
<=>(a^2+b^2)>=2ab
<=> a^2+2ab+b^2>=2ab
<=>a^2+b^2>=0(luôn đúng)
=> điều phải chứng minh.
Xét hiệu: \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
=> \(a^2+b^2\ge2ab\)
Dấu "=" xra <=> a = b
Áp dụng ta có:
a) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)
dấu "=" xra <=> a = b = c = 1
b) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)
Dấu "=" xra <=> a = b= c = d = 2
a) Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{cases}}\)
nhân theo 3 vế BDDT ta đc:
( a^2+1) (b^2+1)(c^2+1) >= 2a.2b.2c = 8abc
"=" <=> a=b=c
Cho a,b,c là các số dương thỏa mãn \(a^2+2b^2\le3c^2\).Chứng minh \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\)
BÀI NÀY CÓ ÁP DỤNG ĐƯỢC SVAC-XƠ KO CÁC BẠN
Thì bạn cứ biết là áp dụng bđt
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{\left(1+2\right)^2}{a+2b}=\frac{9}{a+2b}\) ( BĐT Schwarz )
Ta cần cm \(a+2b\le3c\)
\(\left(a+2b\right)^2=\left(1\cdot a+\sqrt{2}\cdot b\cdot\sqrt{2}\right)^2\le\left(1^2+\left(\sqrt{2}\right)^2\right)\left(a^2+2b^2\right)=3\left(a^2+2b^2\right)\le3.3c^2=9c^2\)( BUN nhiacopxki )
<=> \(\sqrt{\left(a+2b\right)^2}\le\sqrt{9c^2}\Leftrightarrow a+2b\le3c\) ( XONG )
Dấu '' = '' xảy ra khi a = b = c
1> cho a,b,c là các số hữu tủ khác 0 thoả mãn a+b+c=0. CMR: M= 1/a^2+ 1/b^2 + 1/c^2
2> rút gọn biểu thức sau và tìm giá trị nguyên của x để biểu thức có giá trị nguyên
M = ( x^2-2x / 2x^2+8 - 2x^2 / 8-4x+2x^2-x^3 ).( 1 - 1/x - 2/x^2 )
3> cho a,b,c là các số không âm và không lớn hơn 2 thoả mãn a+b+c=0. CMR a^2 + b^2 + c^2 <_ 5
1, Áp dụng định lý Pytago. Chứng minh rằng nếu ta có a, b, c > 0 sao cho a = m2 + n2 ; b = m2 - n2 ; c = 2mn thì a, b, c là số đo 3 cạnh của tam giác vuông.
2, Các ạnh góc vuông của một tam giác vuông có độ dài a, b và diện tích bằng S. Tính các góc của tam giác vuông đó biết (a + b)2
3, Chứng minh rằng nếu a, b, c là độ dài ba cạnh của 1 tam giác vuông (với a là độ dài cạnh huyền) thì các số x, y, z sau đây cũng là độ dài cạnh của tam giác vuông: x = 9a + 4b +8c ; y = 4a + b+ 4c ; z = 8a + 4b + 7c
- Cho biểu thức : M = (b^2 +c^2 - a^2 )^2-4b^c^2
a) Phân tích M thành 4 nhân tử bậc nhất
b) CMR : Nếu a,b,c là số đo độ dài các cạnh của một tam giác thì M<0
c) Giả sử a,b,c là các số nguyên và a+b+c chia hết cho 6 . CMR : M chia hết cho 6
a) Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(M=\left(b^2+c^2-a^2\right)^2-4b^2c^2=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)
b) Nếu a,b,c là độ dài các cạnh của tam giác thì ta có : \(\hept{\begin{cases}a+b>c>0\\b+c>a>0\\a+c>b>0\end{cases}\Leftrightarrow\hept{\begin{cases}b-c-a< 0\left(1\right)\\b-c+a>0\left(2\right)\\b+c-a>0\left(3\right)\end{cases}}}\)
Nhân (1) , (2) , (3) theo vế cùng với a+b+c>0 được M<0
c) Dễ thấy rằng : Trong phân tích M thành nhân tử, ta thấy có xuất hiện thừa số (a+b+c)
Mà a+b+c chia hết cho 6 nên suy ra M chia hết cho 6
cho các số a,b,c là các số thực khác không thoả mãn điều kiện 1/a+1/2b+1/c=0. Tính giá trị M=2bc/a^2+ca/4b^2+2ab/c^2
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{2b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=0\)
\(M=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3}{xyz}=\dfrac{-z^3-3xy\left(-z\right)+z^3}{xyz}\)
\(=\dfrac{3xyz}{xyz}=3\)
Cho a,bc là độ dài các cạnh của tam giác
a,C/m (-a+b+c)a2-(-a+b+c)(b-c)2>=0
b, C/m (a+b-c)(a-b+c)(-a+b+c)<=abc
c,4a2b2-(a2+b2-c2)2>0
d,Giả sử (1+b/a)(1+c/b)(1+a/c)=8
C/m a=b=c