\(215\times\left\{362:\left[288\times5^0-\left(3^3+5\times4^2\right)\right]\right\}\)
A = \(\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times....\times\left(1+\frac{1}{5\times7}\right)\)=?
1=3/3=4/4=5/5=...
=> 1+1/1*3=3/1*3=1/1
=> 1+1/2*4=4/2*4=1/2
=>...
Bieu thuc se con lai la 1*1/2*1/3*1/4*1/5
Vay A=1/120
Tính P = \(\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times\left(1+\frac{1}{4\times6}\right)\times...\times\left(1+\frac{1}{2009\times2011}\right)\)
(1+\(\frac{1}{3}\)) x (1+\(\frac{1}{2x4}\)) x(1+\(\frac{1}{3x5}\))x(1+\(\frac{1}{4x6}\)) x .....x (1+ \(\frac{1}{2009x2011}\))
= \(\frac{2}{1x3}\)x \(\frac{2}{2x4}\)x \(\frac{2}{3x5}\)x \(\frac{2}{4x6}\)x....x \(\frac{2}{2009x2011}\)
= ..................
đến đây tự làm nhé
Tinh \(\left(1-\frac{2}{2\times3}\right)\times\left(1-\frac{2}{3\times4}\right)\times\left(1-\frac{2}{4\times5}\right)\times...\times\left(1-\frac{2}{2015\times2016}\right)\)
tính \(A=\frac{1}{2}\times\left(1+\frac{1}{1\times3}\right)\times\left(1+\frac{1}{2\times4}\right)\times\left(1+\frac{1}{3\times5}\right)\times...\times\left(1+\frac{1}{2015\times2017}\right)\)
\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)\(A=\frac{1}{2}\left(\frac{1\cdot3+1}{1\cdot3}\right)\left(\frac{2\cdot4+1}{2\cdot4}\right)...\left(\frac{2015\cdot2017+1}{2015\cdot2017}\right)\)
\(A=\frac{1^2}{2}\cdot\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\cdot\cdot\frac{2016^2}{2015\cdot2017}\)
\(A=\frac{1^2\cdot2^2\cdot3^2\cdot\cdot\cdot2016^2}{2\cdot1\cdot3\cdot2\cdot4\cdot\cdot\cdot2015\cdot2017}\)
\(A=\frac{2016}{2017}\)
Tính nhanh:\(\frac{\left(1+2\right)\times3}{\left(2+3\right)\times4}+\frac{\left(2+3\right)\times4}{\left(3+4\right)\times5}+...+\frac{\left(999+1000\right)\times1001}{\left(1000+1001\right)\times1002}+\frac{\left(1000+1001\right)\times1002}{\left(1001+1002\right)\times1003}\)
CMR với mọi số tự nhiên n lớn hơn hoặc bằng 1 thì:
\(\left(1+\frac{1}{1\times3}\right)\left(1+\frac{1}{2\times4}\right)\left(1+\frac{1}{3\times5}\right).......\left(1+\frac{1}{n\times\left(n+2\right)}\right)< 2\)
Tính giá trị biểu thức
\(A=\frac{\left(0,6\right)^5}{\left(0,3\right)^6}\) \(B=\frac{-1^3}{3^3+3\times6^2+6^3}\)
\(C=\frac{2\times5^5\times4^5}{20^4\times5^4}\) \(D=\left(\frac{-10}{3}\right)^3\times\left(\frac{-6}{5}\right)^3\)
\(E=2\div\left(\frac{1}{2}-\frac{2}{3}\right)^{^2}\) \(G=\left(\frac{4}{5}-\frac{3}{2}\right)^2\div\left(1-\frac{1}{4}+\frac{2}{3}\right)\)
Tính C=\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+....+\frac{1}{n\times\left(n+1\right)\times\left(n+2\right)}\)
Bạn nào giúp mik nhớ viết cả cách giải cho mik nhé!!!!!!!!!!
CMR
\(1\times3+2\times4+3\times5+\left(n-1\right)\left(n+1\right)=\frac{\left(n-1\right)n\left(2n+1\right)}{6}\)