\(1\frac{1}{3}x-1\frac{1}{3}=\frac{13}{3}x-\frac{13}{3}\)
\(1\frac{1}{3}x-1\frac{1}{3}=\frac{13}{3}x-\frac{13}{3}\)
\(1\frac{1}{3}x-1\frac{1}{3}=\frac{13}{3}x-\frac{13}{3}\)
\(\frac{4}{3}x-\frac{4}{3}=\frac{13}{3}x-\frac{13}{3}\)
\(\frac{4}{3}x-\frac{13}{3}x=-\frac{13}{3}+\frac{4}{3}\)
\(-3x=-3\)
x=1
\(\frac{3}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right) = ?
\(1\frac{13}{15}.0,75-\left(\frac{8}{15}+25\%\right).\frac{24}{47}-3\frac{12}{13}:3\)
Tìm x
\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
câu 1 : là -4
câu 2 : là -1
nếu đúng hãy cho mình 1 k đúng nhé
\(\frac{19}{13}-\left(\frac{5}{42}-x\right)=-\left(\frac{15}{28}-\frac{19}{13}\right)\)
b)\(\left[\frac{1}{3}x^3\left(3x-1\right)^m-\frac{1}{3}x^{m+3}\right]:\frac{1}{3}x^3=0\left(m\in N\right)\)
Tìm x nha
Tìm x thuộc z biết :
X = \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{5}+\frac{5}{6}}\)
giúp m nha !!! m tick
X=3/7:5/7-3/11:5/11+3/13:5/13
+
1/2:5/4-1/3+1/4:5/6
=3/5-3/5+3/5 + 2/5-1/3+3/10
=3/5 + 11/10
=17/10
Bài 1: A= \(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{15}+\frac{11}{13}-\frac{9}{11}+\frac{7}{8}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
Bài 2:Tìm x , 3x.\(\left(x-\frac{2}{3}\right)=0\)
\(3x.\left(x-\frac{2}{3}\right)=0\)
\(\Leftrightarrow3x=0\)hoặc \(x-\frac{2}{3}=0\)
\(3x=0\Rightarrow x=0\)
\(x-\frac{2}{3}=0\Rightarrow x=0+\frac{2}{3}=\frac{2}{3}\)
Vậy..
Bài 2: a.Tính
\(\frac{1}{4}-\frac{1}{7}=\frac{3}{4.7};_{ }_{ }\frac{1}{7}-\frac{1}{10}=\frac{3}{7.10};_{ }_{ }\frac{1}{10}-\frac{1}{13}=\frac{3}{10.13};_{ }_{ }\frac{1}{13}-\frac{1}{16}=\frac{3}{13.16};_{ }....._{ }\frac{1}{x}-\frac{1}{x+3}=\frac{3}{x\left(x+3\right)}\)Qui luật: \(\frac{m}{a\left(a+m\right)}=\frac{1}{a}-\frac{1}{a+m}\)
b. A = \(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{x\left(x+3\right)}\)
3A = \(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{x\left(x+3\right)}\)
3A = \(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+3}\)
3 A = \(\frac{1}{4}-\frac{1}{x+3}\)
\(\frac{63}{764}.3=\frac{1}{4}-\frac{1}{x+3}\)
\(\frac{189}{764}=\frac{1}{4}-\frac{1}{x+3}\)
\(\frac{1}{382}=\frac{1}{x+3}_{ }_{ }_{ }=>x=382-3=379\)
Bài toán gì mà có cả câu trả lời thế này ????????
Đăng lên mà trả lời luôn thế này thì đăng lên làm gì cho nó mệt
Cho x thỏa mãn \(\frac{2}{3}< x< \frac{13}{2}\). Chứng minh rằng:\(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\ge\frac{3}{7}\).
Ta có:
Vì \(\frac{2}{3}< x< \frac{13}{2}\Rightarrow\hept{\begin{cases}3x-2>0\\10-x>0\\13-2x>0\end{cases}}\)
Khi đó: \(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\)
\(=\frac{1}{3x-2}+\frac{1}{10-x}+\frac{1}{13-2x}\) \(\left(1\right)\)
Áp dụng BĐT Cauchy Schwarz ta được:
\(\left(1\right)\ge\frac{\left(1+1+1\right)^2}{3x-2+10-x+13-2x}\)
\(=\frac{3^2}{21}=\frac{3}{7}\)
Vậy với \(\frac{2}{3}< x< \frac{13}{2}\) thì \(\frac{1}{3x-2}-\frac{1}{x-10}+\frac{1}{13-2x}\ge\frac{3}{7}\)
Câu 1: Thực hiện phép tính:
29 x ( 19 - 13) - 19 x (29 - 13)
Câu 2: Tính tổng
S = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}\)
1 : 29 x ( 19 -13 ) - 19 x ( 29 - 13 )
= 29 x 6 - 19 x 16
= 174 - 304
= - 130
2 : 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)