Tìm n E Z để n+3/n+8 tối giản
Bài 1: Tìm n thuộc Z :
n+3/n+10 > 0
Bài 2: Tìm n thuộc Z để :
a) 8-n/n+3 > 0
b) n+1/2n-3 < 0
c) n-1/n+2 tối giản
d) n+1/n+7 rút gọn được
e) 2n+1/3n-7 tối giản
AI NHANH ĐƯỢC TICK !!! KHÔNG CẦN PHẢI LÀM HẾT !!!
mình nhanh quá đến nỗi quên trả lời đây!
Tìm n E Z để P=3n^2+2n+3/2n+1 không tối giản
Tìm n E Z để P=3n^2+2n+3/2n+1 không tối giản
cho phân số A=\(\frac{n+1}{n+3}\)(n E z,n khác 3) .Tìm n để A là phân số tối giản
Cho biểu thức A= n+5 trên n+3 với n thuộc z
a)tìm n để A bằng 1phần2
b)tìm n thuộc z để A nhận giá trị nguyên
c)tìm n thuộc z để A rút gọn được
e)tìm n để A là phân số tối giản
\(B.\) Để n thuộc z để A nhận giá trị nguyên thì
\(n+5\)\(⋮n+3\)
\(\Rightarrow\)\(\left(n+3\right)+2⋮n+3\)
\(\Rightarrow\)\(n+3\inƯ_{\left(2\right)}\)\(=\left\{\pm1;\pm2\right\}\)
\(n+3=1\Rightarrow x=1-3=-2\)\(\in Z\)\(n+3=-1\Rightarrow x=\left(-1\right)-3=-4\)\(\in Z\)\(n+3=2\Rightarrow x=2-3=-1\in Z\)\(n+3=-2\Rightarrow x=\left(-2\right)-3=-5\in Z\)Vậy x \(\in\){ -2 ; -4 ; -1 ; -5}.
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
Cho A=2/n-3
a, tìm n để A=-3/5,-4/7
B, tìm n để A>O,A<2
C,tìm n để A thuộc Z
D, tìm n để A tối giản
E,tìm n để A max
a) Tìm số tự nhiên n để \(\frac{7}{n+9};\frac{8}{n+10};\frac{9}{n+11};\frac{10}{n+12};\frac{11}{n+13}\)tối giản
b) A = \(\frac{n-1}{n+4}\)tìm n thuộc Z để A tối giản
tìm n nhỏ nhất nha
\(\frac{7}{n+9};\frac{8}{n+10};....;\frac{11}{n+13}\) tối giản
\(\Leftrightarrow\frac{n+9}{7};\frac{n+10}{8};\frac{n+11}{9};....;\frac{n+13}{11}\)tối giản
\(\Leftrightarrow\frac{n+2}{7};\frac{n+2}{8};......;\frac{n+2}{11}\)tối giản
nên n+2 là số nhỏ nhất nguyên tố cùng nhau với 7;8;...;11
nên: n+2 là số nguyên tố lớn nhất lớn hơn 11
=> n+2=13=> n=11
a) Ta có : \(\frac{7}{n+9}=\frac{7}{\left(n+2\right)+7}\).
Để \(\frac{7}{\left(n+2\right)+7}\)tối giản thì 7 và ( n +2 ) nguyên tố cùng nhau
Tương tự ta có : 8 và (n+2) NTCN
9 và(n+2) NTCN
10 và (n+2) NTCN
11 và (n+2) NTCN
Vậy để \(\frac{7}{n+9};\frac{8}{n+10};...\)tối giản thì : n + 2 phải NTCN với 7;8;9;10;11
Mà n nhỏ nhất nên n+2 là SNT nhỏ nhất > 1
Vậy n + 2= 13 => n = 11
b) A=n+4-5/n+4 = n+4/n+4 - 5/n+4
A=1 - 5/n+4
Vì 1 thuộc Z nên a thuộc Z khi 5/n+4 thuộc Z
Suy ra 5 chia hết n+4 hay n+4 thuộc Ư(5) = (1;-1;5;-5)
-1: n+4=1 => n=-3
-2: n+4=-1 => n=-5
-3: n+4=5 => n=1
-4: n+4=-5 => n=-9
Vậy n thuộc ( 1; -3 ; -5 ; -9 ) thì A thuộc Z
Hok tốt
Cho phân số A = n + 1 n - 3 ( n ∈ Z , n ≠ 3 )
Tìm n để A là phân số tối giản .