giut gon da thuc thanh nhan tu
12n +3y +12 = 24
phan tich da thuc thanh nhan tu xy+xz+3+3y
phan tich da thuc thanh nhan tu -25x^6-y^8+10x^3y^4
Bạn trình bầy rõ ràng chút đi. Mk chẳng hiểu gì cả.
\(-25x^6-y^8+10x^3y^4\\ =-\left(25x^6-10x^3y^4+y^8\right)\\ =-\left[\left(5x^3\right)^2-2\cdot5x^3\cdot y^4+\left(y^4\right)^2\right]\\ \\ =\left(5x^3-y^4\right)^2\)
pt da thuc thanh nhan tu:(x-3y)2-2(x-3y)(x+3y)+(x+3y)2
\((x-3y)^2-2(x-3y)(x+3y)+(x+3y)^2\)
\(=(x-3y-x-3y)^2\)
=\((-6y)^2\)
\(=36y^2\)
phan tich da thuc thanh nhan tu
x^2-3x+3y-y^2
x2 - 3x + 3y - y2
= (x2 - y2) - (3x - 3y)
= (x - y)(x + y) - 3(x - y)
= (x - y)(x + y - 3)
= x2 - y2 - 3x+3y = (x-y)(x+y) -3(x-y)
= (x+y+3)(x-y)
nhớ chọn cho mk nha!!!!!!
phan tich da thuc thanh nhan tu
a, x^5+x-1
b, (x^2+3x+2)(x62+7x+12)-24
b ( x^2 + 3x + 2)( x^2 + 7x + 12) - 24
= [ x^2 +x + 2x + 2) ( x^2 +3x + 4x + 12) - 24
= [x(x+1) + 2 (x + 1) [x(x+3) + 4(x+3) ] - 24
= ( x + 1)(x+2) (x+3)(x+4) - 24
= ( x + 1).(x+4) (x+2)(x+3) - 24
=(x^2 + 5x + 4)(x^2+5x+6) - 24
Đặt x^2 + 5x +4 =y ta có:
= y(y+2) - 24
= y^2 + 2y - 24
= y^2 + 2y + 1 - 25
= ( y + 1)^2 - (5)^2
= ( y + 1 - 5 )( y + 1 + 5)
= ( y- 4)(y +6)
Thay y trở lại là đc
đúng nha
phan tich da thuc sau thanh nhan tu:
a)(x-y+4)^2-(2x+3y-1)^2
Đặt \(A=\left(x-y+4\right)^2-\left(3x+3y-1\right)^2\)
Ta có:
\(\left(x-y+4\right)^2=x^2-xy+4x-yx+y^2-4y+4x-4y+16\)
\(=x^2+y^2-2xy+8x-8y+16\)
\(\left(3x+3y-1\right)^2=9x^2+9xy-3x+9xy+9y^2-3y-3x-3y+1\)
\(=9x^2+9y^2-6x-6y+18xy+1\)
Mình làm đến đây bạn trừ 2 kết quả cho nhau rồi sẽ ra
Phan tich da thuc thanh nhan tu
x2-y2-3x+3y
x2-y2-3x+3y
=(x+y)(x-y)-3.(x-y)
=(x-y)(x+y-3)
Phan tich da thuc thanh nhan tu
x2-2xy+y2-3x+3y
=(x^2-2xy-y^2)-(3x-3y)
=(x-y)^2-3(x-y)
=(x-y)(x-y-3)
phan tich da thuc thanh nhan tu d/ (x^2 +6x+8) (x^2+8x+15)-24
(x2 + 2.x.3 + 32 - 1).(x2 + 2.x.4 + 16 - 1) - 24
=[(x+3)2 - 1]. [(x+4)2-1] -24
=(x+3+1)(x+3-1)(x+4+1)(x+4-1) - 24
=(x+4)(x+2)(x+5)(x-3) - 24
(x2+6x+8)(x2+8x+15)-24
<=>(x2+4x+2x+8)(x2+5x+3x+15)-24
<=> [x(x+4)+2(x+4)][x(x+5)+3(x+5)]-24
<=> (x+4)(x+2)(x+5)(x+3)-24
<=> (x+4)(x+3)(x+2)(x+5)-24
<=>(x2+7x+12)(x2+7x+10)
đặt t=x2+7x+11 ta có:
(t-1)(t+1)-24
<=> t2-1-24
<=>t2-25
<=>(t-5)(t+5)
thay t=x2+7x+11 vào ta có:
(x2+7x+11-5)(x2+7x+11+5)
<=>(x2+7x+6)(x2+7x+16)