cho P=(x+y)^2 +(x+z)^2 +(y+z)^2
Q=(x+y)(x+z)+(x+z)(y+z) +(y+z)(x+y)
CMR neu p=Q thì x=y=z
Cho P=(x+y)2 + (y+z)2 + (z+x)2
Q=(x+y)(y+z) + (y+z)(z+x) + (z+x)(x+y)
CMR nếu P=Q thì x=y=z
\(P=Q\) thì \(x=y=z\) lật lại là \(x=y=z\) thì \(P=Q\) ta thay vào xem nó đúng thật ko nhé :v
Với \(x=y=z\) thì \(P=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)
\(=\left(x+x\right)^2+\left(x+x\right)^2+\left(x+x\right)^2\)
\(=\left(2x\right)^2+\left(2x\right)^2+\left(2x\right)^2=4x^2+4x^2+4x^2=12x^2\)
Với \(x=y=z\) thì \(Q=\left(x+y\right)\left(y+z\right)+\left(y+z\right)\left(x+z\right)+\left(x+z\right)\left(x+y\right)\)
\(=\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)\)
\(=2x\cdot2x+2x\cdot2x+2x\cdot2x\)
\(=4x^2+4x^2+4x^2=12x^2\)
Rõ rằng là bằng nhau rồi tức là điều trên cũng đúng hay ta có ĐPCM
Cho \(P=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)
\(Q=\left(x+y\right)\left(y+z\right)+\left(y+z\right)\left(z+x\right)+\left(z+x\right)\left(x+y\right)\)
CMR : Nếu P=Q thì x=y=z
Đặt \(a=x+y,b=y+z,c=z+x\)
Khi đó nếu P = Q tức là \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Từ đó bạn suy ra nhé ! ^^
Bai 1
a,cho 3 so x,y,z thoa man; x/1998=y/1999=z/2000
CMR: (x-z)^3=8(x-y)^2 x (y-z)
b, CMR: neu 2(x+y)= 5(y+z)=3(z+x) thi x-y/4=y-z/5
xét 2 biểu thức: \(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(Q=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
cmr: nếu P=1 thì Q=0
đề vậy thôi, nhưng cám ơn nha. mk biết lm oii
Cho \(\dfrac{x^2}{z+y}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\)
Cmr: \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=1\)
CMR nếu \(x,y,z\) là các số dương thì \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
Ta có \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)
\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z\ge\frac{x+y+z}{2}+x+y+z\)
\(\Rightarrow x\left(\frac{x}{y+z}+1\right)+y\left(\frac{y}{x+z}+1\right)+z\left(\frac{z}{x+y}+1\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow x\left(\frac{x+y+z}{y+z}\right)+y\left(\frac{y+x+z}{x+z}\right)+z\left(\frac{z+x+y}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (Theo BĐT Nesbitt )
\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (đpcm)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=\)0 ( x + y + z \(\ne\)0 )
CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
Bạn có thể sử dụng BĐT thức Cô-si và xét trường hợp dấu bằng xảy ra nhé bạn !
Câu hỏi của Trần Ngọc Tú - Toán lớp 8 - Học toán với OnlineMath
Cho (x+y)(x+z) + (y+z)(y+x) = 2(z+x)(z+y) . CMR: \(z^2=\frac{x^2+y^2}{2}\) !?!?
\(\Leftrightarrow x^2+2xz+2xy+2yz+y^2=2z^2+2yz+2xz+2zx\Leftrightarrow2z^2=x^2+y^2\Leftrightarrow z^2=\frac{x^2+y^2}{2}\)
Cho \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\) .CMR : \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1.\)