Tìm Min của A, biết A= 2x^2 + y^2-2xy-2x-2y+15
Tìm min: a, A=9x^2 - 6x +5 b, B= 2x^2 + 2xy + y^2 -2x +2y+2
Tìm max: a, M= -2x^2 +3x +1 b, N =-x^2 + 2xy - 4y^2 + 2x+ 10y +5
Tìm Min của A= 5x^2 +2y^2 +2x- 2xy +14y+1932
1.Tìm Min
A=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+1017
B=x^2+xy+y^2-3x-3y
2.Tìm Max
A=-x^2+2xy-4y^2+2x+10y+5
B= -x2 - 2y2 - 2xy + 2x - 2y -15
Tìm GTNN của biểu thức:
a) \(A=2x^2+2xy+y^2-2x+2y+2\)
b) \(B=-x^2+2xy-4y^2+2x+10y+5\)
c) \(C=-x^2-2y^2-2xy+2x-2y-15\)
Tìm min của A = x mũ 2 + 2y mũ 2 + 2xy +2x - 4y + 2020
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}y=3\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=-4\end{cases}}}\)
Vậy \(Min_A=2010\Leftrightarrow\hept{\begin{cases}x=-4\\y=3\end{cases}}\)
Chúc bạn học tốt !!!
Tham khảo :
\(A=x^2+2y^2+2xy+2x-4y+2020\)
\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)
Dấu ''=''= xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=-4\\y=3\end{cases}}\)
cho mình hỏi cái :
10 mũ x+4y=2013
mình đang cần gấp 3 tiếng nưa là mình phải đi học rồi
x^2 +2y^2 +2xy +2x+2y -3 = O
Tìm max min của Q = x+y
Tìm Min:
a) A= 2x2 +2xy +y2 - 2x +2y +2
b) B= x2 + xy + y2- 3x - 3y
\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)
\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)
Min A=-3 khi x=2;y=-3
\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)
\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)
Min B=-3 khi y=1;x=1
Tìm Min
2x2+2xy+y2-2x+2y+2
tìm min của E=2x^2+2xy+y^2-6x-2y+2018 giúp tớ nhé