Chứng minh rằng: \(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}<1\)
Chứng minh rằng \(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}< 1\)
Ta có
\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)
\(A=3^2\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)
\(A=3^2\cdot\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3\cdot\frac{3}{80}=\frac{9}{80}< 1\left(9< 80\right)\)
Chứng minh
\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\) <1
\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)
\(\frac{A}{3}=\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\)
\(\frac{A}{3}=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\)
\(\frac{A}{3}=\frac{1}{20}-\frac{1}{80}\)
\(\frac{A}{3}=\frac{3}{80}\)
\(A=\frac{3}{80}.3=\frac{9}{80}< 1\)
Đặt A=32/20.23+32/23.26+....................+32/77.80
A=3(3/20.23+3/23.26+.........+3/77.80)
A=3(1/20-1/23+1/23-1/26+.+1/77-1/80)
A=3(1/20-1/80)
A=3.3/80
A=9/80 Mà A=9/80<1 =>A<1 (đpcm)
Chứng minh
a) \(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...\frac{3^2}{77.80}<\frac{1}{8}\)
\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}<\frac{1}{8}\)
\(=3\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=3.\frac{3}{80}=\frac{9}{80}\)
\(\Rightarrow\frac{9}{80}=\frac{1}{8}\)
Chứng minh rằng:
\(\frac{3^2}{20.23}\)+ \(\frac{3^2}{23.26}\)+ ... + \(\frac{3^2}{77.80}\)< 1
Làm đi mình tick cho :3
\(3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+....+\frac{3}{77\cdot80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\right)\)
\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{3}{20}-\frac{3}{80}\)
\(< 1\)
Tính tổng:
a) \(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}\)
\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}\)
=\(\frac{3.3}{20.23}+\frac{3.3}{23.26}+\frac{3.3}{26.29}+...+\frac{3.3}{77.80}\)
=\(\frac{3}{20}-\frac{3}{23}+\frac{3}{23}-\frac{3}{26}+\frac{3}{26}-\frac{3}{29}+....+\frac{3}{77}-\frac{3}{80}\)
=\(\frac{3}{20}-\frac{3}{80}\)
=\(\frac{9}{80}\)
Ta có:
\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}=3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)=3.\left(\frac{1}{20}-\frac{1}{80}\right)=3.\frac{3}{80}=\frac{9}{80}\)
Chứng minh rằng
\(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\)
Đặt A=\(\frac{1}{20.23}+\frac{1}{23.26}+....+\frac{1}{77.80}\)
=>A=\(\frac{1}{3}\).(\(\frac{3}{20.23}+\frac{3}{23.26}+....+\frac{3}{77.80}\))
=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\))
=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{80}\))
=>A=\(\frac{1}{3}.\frac{3}{80}\)
=>A=\(\frac{1}{80}\)
Do \(\frac{1}{80}\)<\(\frac{1}{9}\)
Nên \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+....+\frac{1}{77.80}< \frac{1}{9}\)
Chứng minh rằng
\(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}< \frac{1}{9}\)
Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
= \(\frac{1}{3.}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+....+\frac{1}{77}-\frac{1}{80}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
= \(\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)
Chứng minh rằng : 32/20.23+32/23.26+....+32/77.80<1
3^2= 9
Vậy thì sẽ là:
9/ 20.23+ 9/ 23.26+...9/77.80
cách nhau 3 bỏ 3 ra ngoài
= 3(3/20.23+...3/77.80)
=3(3/20-3/23+3/23-3/26+.....+3/77-3/80)
=3(3/20-3/80)
=3. 9/80
=27/80<1
32=9
\(\frac{3^2}{20.23}\)+\(\frac{3^2}{23.26}\)+...+\(\frac{3^2}{77.80}\)
=\(\frac{9}{20.23}\)+\(\frac{9}{23.26}\)+...+\(\frac{9}{77.80}\)
=3(\(\frac{3}{20.23}\)+\(\frac{3}{23.26}\)+...+\(\frac{3}{77.80}\))
=3(\(\frac{1}{20}\)-\(\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\))
=3(\(\frac{1}{20}-\frac{1}{80}\))
=3(\(\frac{4}{80}-\frac{1}{80}\))
=3.\(\frac{3}{80}\)
=\(\frac{9}{80}\)<1
Vậy\(\frac{9}{80}< 1\)
Chứng minh rằng:
32/20.23+32/23.26+...+32/77.80<1
\(\dfrac{3^2}{20.23}\)+\(\dfrac{3^2}{23.26}\)+...+\(\dfrac{3^2}{77.80}\)
=> \(\dfrac{9}{20.23}+...+\dfrac{9}{77.80}\)
= 9.\(\left(\dfrac{1}{20.23}+...+\dfrac{1}{77.80}\right)\)
\(=9.\left(\dfrac{1}{20.3}-\dfrac{1}{23.3}+\dfrac{1}{23.3}-\dfrac{1}{26.3}+...+\dfrac{1}{77.3}-\dfrac{1}{80.3}\right)\)= \(9.\left(\dfrac{1}{20.3}-\dfrac{1}{80.3}\right)\)
\(=9.\dfrac{1}{80}\)=\(\dfrac{9}{80}=0,1125< 1.\)