Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Kim chung
Xem chi tiết
le bao truc
8 tháng 5 2017 lúc 9:24

Ta có
\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)
\(A=3^2\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)
\(A=3^2\cdot\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3\cdot\frac{3}{80}=\frac{9}{80}< 1\left(9< 80\right)\)

Nguyễn Văn Nam
Xem chi tiết
An Hoà
29 tháng 3 2018 lúc 12:45

\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)

\(\frac{A}{3}=\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\)

\(\frac{A}{3}=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\)

\(\frac{A}{3}=\frac{1}{20}-\frac{1}{80}\)

\(\frac{A}{3}=\frac{3}{80}\)

\(A=\frac{3}{80}.3=\frac{9}{80}< 1\)

Vua bà hay nổi dận
29 tháng 3 2018 lúc 12:50

Đặt A=32/20.23+32/23.26+....................+32/77.80

      A=3(3/20.23+3/23.26+.........+3/77.80)

     A=3(1/20-1/23+1/23-1/26+.+1/77-1/80)

     A=3(1/20-1/80)

    A=3.3/80

    A=9/80                       Mà A=9/80<1         =>A<1                   (đpcm)

Nguyễn Thị Mai Phương
Xem chi tiết
TFboys_Lê Phương Thảo
3 tháng 5 2016 lúc 13:56

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}<\frac{1}{8}\)

\(=3\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3.\frac{3}{80}=\frac{9}{80}\)

\(\Rightarrow\frac{9}{80}=\frac{1}{8}\)

Vu Hai Anh
Xem chi tiết
zZz Cool Kid_new zZz
23 tháng 4 2019 lúc 21:46

\(3\left(\frac{3}{20\cdot23}+\frac{3}{23\cdot26}+....+\frac{3}{77\cdot80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{3}{20}-\frac{3}{80}\)

\(< 1\)

Văn Phát Lê
Xem chi tiết
Trịnh Thành Công
4 tháng 5 2016 lúc 15:27

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}\)

=\(\frac{3.3}{20.23}+\frac{3.3}{23.26}+\frac{3.3}{26.29}+...+\frac{3.3}{77.80}\)

=\(\frac{3}{20}-\frac{3}{23}+\frac{3}{23}-\frac{3}{26}+\frac{3}{26}-\frac{3}{29}+....+\frac{3}{77}-\frac{3}{80}\)

=\(\frac{3}{20}-\frac{3}{80}\)

=\(\frac{9}{80}\)

Yêu Toán
4 tháng 5 2016 lúc 15:43

Ta có:

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}=3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)=3.\left(\frac{1}{20}-\frac{1}{80}\right)=3.\frac{3}{80}=\frac{9}{80}\)

Trịnh Thành Công
4 tháng 5 2016 lúc 15:47

Giống kết quả của mk thôi

 

Trường Thái Nhật
Xem chi tiết
Ngọc Lan Tiên Tử
6 tháng 5 2019 lúc 22:53

Đặt A=\(\frac{1}{20.23}+\frac{1}{23.26}+....+\frac{1}{77.80}\)

=>A=\(\frac{1}{3}\).(\(\frac{3}{20.23}+\frac{3}{23.26}+....+\frac{3}{77.80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{80}\))

=>A=\(\frac{1}{3}.\frac{3}{80}\)

=>A=\(\frac{1}{80}\)

Do \(\frac{1}{80}\)<\(\frac{1}{9}\)

Nên \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+....+\frac{1}{77.80}< \frac{1}{9}\)

Trường Thái Nhật
6 tháng 5 2019 lúc 22:50

ko bt

Trường Thái Nhật
6 tháng 5 2019 lúc 22:50

giúp mik nha đng cần gấp

Trường Thái Nhật
Xem chi tiết
Lê Tài Bảo Châu
6 tháng 5 2019 lúc 23:01

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

Edogawa Conan
6 tháng 5 2019 lúc 23:02

Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)

\(\frac{1}{3.}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+....+\frac{1}{77}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)

Bao chi
Xem chi tiết
Trần Tuyết Như
29 tháng 4 2015 lúc 8:59

3^2= 9 
Vậy thì sẽ là:
9/ 20.23+ 9/ 23.26+...9/77.80
cách nhau 3 bỏ 3 ra ngoài
= 3(3/20.23+...3/77.80)
=3(3/20-3/23+3/23-3/26+.....+3/77-3/80)
=3(3/20-3/80)
=3. 9/80
=27/80<1

Vũ Nguyễn Việt Anh
27 tháng 4 2017 lúc 21:26

32=9

\(\frac{3^2}{20.23}\)+\(\frac{3^2}{23.26}\)+...+\(\frac{3^2}{77.80}\)

=\(\frac{9}{20.23}\)+\(\frac{9}{23.26}\)+...+\(\frac{9}{77.80}\)

=3(\(\frac{3}{20.23}\)+\(\frac{3}{23.26}\)+...+\(\frac{3}{77.80}\))

=3(\(\frac{1}{20}\)-\(\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\))

=3(\(\frac{1}{20}-\frac{1}{80}\))

=3(\(\frac{4}{80}-\frac{1}{80}\))

=3.\(\frac{3}{80}\)

=\(\frac{9}{80}\)<1

Vậy\(\frac{9}{80}< 1\)

Đặng Trần Tây Thi
Xem chi tiết
Dương Nguyễn
1 tháng 5 2017 lúc 15:56

\(\dfrac{3^2}{20.23}\)+\(\dfrac{3^2}{23.26}\)+...+\(\dfrac{3^2}{77.80}\)

=> \(\dfrac{9}{20.23}+...+\dfrac{9}{77.80}\)

= 9.\(\left(\dfrac{1}{20.23}+...+\dfrac{1}{77.80}\right)\)

\(=9.\left(\dfrac{1}{20.3}-\dfrac{1}{23.3}+\dfrac{1}{23.3}-\dfrac{1}{26.3}+...+\dfrac{1}{77.3}-\dfrac{1}{80.3}\right)\)= \(9.\left(\dfrac{1}{20.3}-\dfrac{1}{80.3}\right)\)

\(=9.\dfrac{1}{80}\)=\(\dfrac{9}{80}=0,1125< 1.\)