giá trị x thỏa mản x/2 +x/4 +x/2016 = x/3 + x/5 + x/2017
Tìm giá trị x thỏa mãn x/2 + x/4 + x/2016 = x/3 + x/5 = x/ 2017
người ko xem kĩ sẽ khó làm được (VIOLYMPIC)
ta có x=0 (trong VIOLYMPIC)
thử: x/2+x/4+x/2016=x/3+x/5=x/2017
=> 0/2+0/4+0/2016=0/3+0/5=0/2017
=> 0+0+0 = 0+0 =0 đúng 1000%
ủng hộ nhé
X = 0
Chắc chắn đúng luôn.
Mình vừa thi xong nè 300 điểm đó!
k cho mình nha!
Mai mốt có bài j khó nói với mình , mình chỉ cho.
Tìm giá trị của x thỏa mãn x/2 + x/4 + x/2016 = x/3 + x/5 + x/2017
1/ Giá trị của x^3+ 9x^2y+ 27xy^2+27y^3 Biết (1/3)x+y+1=0
2/Giá trị của x+y=4, x.y=5 và x<0
3/Giá trị của 8x^3- 12x^2y-6xy^2-y^3
4/Giá trị x nguyên tố thỏa mản: x^2-x-20=0
5/Giá trị của x thỏa mãn (x-3)(x^4+2x^2+1)=0
6/Giá trị nhỏ nhất của: A=[x+2]-51/2
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak
1/ Giá trị của x^3+ 9x^2y+ 27xy^2+27y^3 Biết (1/3)x+y+1=0
2/Giá trị của x+y=4, x.y=5 và x<0
3/Giá trị của 8x^3- 12x^2y-6xy^2-y^3
4/Giá trị x nguyên tố thỏa mản: x^2-x-20=0
5/Giá trị của x thỏa mãn (x-3)(x^4+2x^2+1)=0
6/Giá trị nhỏ nhất của: A=[x+2]-51/2
Cho hai số x,y thỏa mãn (x-2)^2016 + |y+1| = 0. Tính giá trị biểu thức A= 2.x^2.y^2016 - 3.(x+ y)^2017
giá trị của x thỏa mãn (x/2015+x/2016)=(x/2016+x/2017)
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
\(\Rightarrow\frac{x}{2015}+\frac{x}{2016}-\frac{x}{2016}-\frac{x}{2017}=0\)
\(\Rightarrow\frac{x}{2015}-\frac{x}{2017}=0\)
\(\Rightarrow x.\left(\frac{1}{2015}-\frac{1}{2017}\right)=0\)
Mà ta thấy \(\frac{1}{2015}-\frac{1}{2017}\ne0\Rightarrow x=0\)
Vậy \(x=0\)
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
\(\Leftrightarrow\frac{x}{2015}+\frac{x}{2016}-\frac{x}{2016}-\frac{x}{2017}=0\)
\(\Leftrightarrow x\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
\(\Leftrightarrow x=0\).Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
Vậy giá trị của x là x=0
Giá trị của x thỏa mãn | x/2015 + x/2016 | = | x/2016 + x/2017|
Tính: 2x^5-5y^3+2017 tại x, y thỏa mãn: giá trị tuyệt đối của( x-1) +(y+2)^2016=0
Giá trị x thỏa mãn
|x/2015 + x/2016 | = | x/2016 + x/2017|
\(\left|\frac{x}{2015}+\frac{x}{2016}\right|=\left|\frac{x}{2016}+\frac{x}{2017}\right|\)
<=>\(\left|x\right|.\left|\frac{1}{2015}+\frac{1}{2016}\right|=\left|x\right|.\left|\frac{1}{2016}+\frac{1}{2017}\right|\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)=0\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
<=>\(\left|x\right|.\left(\frac{1}{2015}-\frac{1}{2017}\right)=0\)
Vì \(\frac{1}{2015}-\frac{1}{2017}\ne0\Rightarrow\left|x\right|=0\Rightarrow x=0\)
Vậy x=0
\(\left|\frac{x}{2015}+\frac{x}{2016}\right|=\left|\frac{x}{2016}+\frac{x}{2017}\right|\)
\(\Rightarrow\left|x.\left(\frac{1}{2015}+\frac{1}{2016}\right)\right|=\left|x.\left(\frac{1}{2016}+\frac{1}{2017}\right)\right|\)
\(\Rightarrow\left|x\right|.\left|\frac{1}{2015}+\frac{1}{2016}\right|=\left|x\right|.\left|\frac{1}{2016}+\frac{1}{2017}\right|\)
\(\Rightarrow\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)\)
Mà \(\frac{1}{2015}+\frac{1}{2016}>\frac{1}{2016}+\frac{1}{2017}\)
=> |x| = 0
=> x = 0
Vậy x = 0