TÍNH NHANH
A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{25.27}\)
Tính nhanh
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}\)
\(=\frac{10}{11}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
Tính nhanh :
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{95.97}+\frac{2}{97.99}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
Tự tính
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
32/99
k với nghe bạn
và chúc chueeuf nay thi tốt
TÍNH
Q = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(Q=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\)\(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)
\(Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(Q=\frac{1}{3}+0+0+0-\frac{1}{11}\)
\(Q=\frac{11}{33}-\frac{3}{33}=\frac{8}{33}\)
\(Q=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}=\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)
Tính
M = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right).\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}x\frac{32}{99}=\frac{32}{198}\)
bn tự rút gọn nha mk mới làm tắt đó
Ta có : \(M=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Tính nhanh :\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{37}-\frac{2}{39}\)
\(=\frac{2}{3}-\frac{2}{39}\)
\(=\frac{8}{13}\)
Ta có:
\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)
\(\frac{2}{5.7}=\frac{1}{5}-\frac{1}{7}\)
\(\frac{2}{7.9}=\frac{1}{7}-\frac{1}{9}\)
\(......................................\)
\(\frac{2}{37.39}=\frac{1}{37}-\frac{1}{39}\)
nên \(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(C=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)
Tính giá trị biểu thức
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......1\frac{2}{41.43}\)
2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43
= 1/3 - 1/43
= 40/129
ỦNG HỘ NHA
2/3.5 + 2/5.7 + 2/7.9 +......+ 2/41.43
= 1/3-1/5 + 1/5-1/7 + 1/7-1/9 +.....+ 1/41-1/43
= 1/3-1/43
= 40/129.
Tính giá trị của N
\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
Giải :
\(N=\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
=> \(N=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
=> \(N=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{101}\right)\right)\)
=> \(N=2.\left(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\right)\)
=> \(N=\frac{98}{303}\)
N=1/2x(1/3-1/5+1/5-1/7+.....+1/99-1/101)
N=1/2x(1/3-1/101)
N=1/2x98/303
N=49/303
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức ta có :
\(\frac{2}{3.5}=\frac{2}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)\)
\(\frac{2}{5.7}=\frac{2}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)\)
........................................
\(\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow\)\(N=1.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Leftrightarrow\)\(N=\frac{1}{3}-\frac{1}{101}\)
\(\Rightarrow N=\frac{98}{303}\)
Ai thấy đúng thì ủng hộ nha !!!!
Tính giá trị biểu thức
A=\(1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}....-\frac{2}{63.65}\)
\(A=1-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-...-\frac{2}{63.65}\)
\(A=1-\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{63-65}\right)\)
\(A=1-\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{63}-\frac{1}{65}\right)\)
\(A=1-\left(\frac{1}{3}-\frac{1}{65}\right)\)
\(A=1-\frac{62}{195}\)
\(A=\frac{133}{195}\)
tính giá trị biểu thức
A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.100}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.100}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)
A=1/3-1/5+1/5-1/7+...+1/99-1/101 là 2/99.101 nhé bạn mình làm nhiều rồi có lẽ bạn ghi đề sai
A=98/303