Tìm x thuộc Q, biết:( làm từng bước rõ ràng giùm mk nha )
\(2.x.\left(x-\frac{1}{7}\right)=0\)
Tìm GTNN
a) A=\(\left(x-\frac{1}{2}\right)^2+4\)
b) B=\(\left(2x+\frac{1}{3}\right)^4-\frac{1}{4}\)
Làm đầy đủ rõ ràng giùm mk nke
đây ne`h bn, mk giải ở đây:
http://olm.vn/hoi-dap/question/171228.html
Tìm x,y biết:
\(\left|x+\frac{11}{7}\right|+\left|x+\frac{2}{7}\right|+\left|x+\frac{4}{7}\right|=4x\)
\(\left(x-2\right)^{2014}+\left(y-1\right)^{2016}+\left(x-y-2\right)=0\)
mk đang cần gấp giúp mk nha các bn
Dùng máy tính để tìm x gần đúng, biết
\(\frac{x}{1+\frac{1}{9+\frac{1}{1+\frac{1}{2+\frac{1}{2009}}}}}+\frac{x}{1+\frac{1}{2+\frac{1}{1+\frac{1}{9+\frac{1}{2010}}}}}=1\)
nhớ trình bày rõ ràng giùm mình nha! ai làm đúng mà nhanh nhất mk tk cho!
các anh ,chị giải chi tiết , rõ ràng cho em nha , em cần gấp lắm:
bài 2: tìm x , biết :
\(5\frac{4}{7}\div\left\{x\div1,3+8,4\times\left[6-\frac{\left(2,3+5\div6,25\right)}{8\times0,0125+6,9}\right]\right\}=1\frac{1}{14}\)
tìm cặp x,y
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
giải rõ ràng giùm mk nha, mk dg gấp
tìm x biết 3^-1.3^x+4.3^x-1 mọi người trả lời rõ ràng nhé .làm từng bước nhé ((#_#))
Bạn nào làm đúng mình cho .... 0 tick :))
Tìm x thuộc Z biết :
\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
Cố gắng giúp mk nha mấy bợn....
Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\) thì phải có một hoặc ba thừa số bé hơn 0
Mà \(x^2-10< x^2-7< x^2-4< x^2-1\)
Trường hợp có một thừa số bé hơn 0 :
\(\Leftrightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7;x^2-4;x^2-1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 10\\x^2>7\end{cases}}\Leftrightarrow7< x^2< 10\)
\(\Rightarrow\)\(x^2=9\)
\(\Rightarrow\)\(x=\pm3\)
Trường hợp có ba thừa số bé hơn 0 :
\(\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4;x^2-7;x^2-10< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\Leftrightarrow1< x^2< 4\) ( loại vì \(x\inℤ\) )
Vậy \(x=3\) hoặc \(x=-3\)
Học tốt
Tìm x thuộc Q, biết:
a)\(\left(x+1\right)\left(x-2\right)<0\) ; b)\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
giải đầy đủ giùm
câu còn lại bạn làm tương tự nhé :))
a) Với \(x\le-1\)thì \(x+1\le0;x-2\le0\Rightarrow\left(x+1\right)\left(x-2\right)\ge0;\)Loại \(x\le-1\)
Với \(x\ge2\)thì \(x+1\ge0;x-2\ge0\Rightarrow\left(x+1\right)\left(x-2\right)\ge0;\)Loại \(x\ge2\)
Với \(-1< x< 2\)thì \(x+1>0;x-2< 0\Rightarrow\left(x+1\right)\left(x-2\right)< 0;\)TMĐK.
Vậy \(-1< x< 2\)và \(x\in Q\)là nghiệm của a).
b) Tương tự, có \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)và \(x\in Q\)là nghiệm của b).
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
1. \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow-1< x< 2}\)
2. \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)(loại)
Vậy điều kiện của x thỏa mãn đề bài là : \(-1< x< 2\)
Tìm \(x;y;z\in Q\) biết:
a)\(\left|x+\frac{3}{7}\right|+\left|y-\frac{4}{9}\right|+\left|z+\frac{5}{11}\right|=0\)
b)\(\left|x-\frac{2}{5}\right|+\left|x+y-\frac{1}{2}\right|+\left|y-z+\frac{3}{5}\right|=0\)
c)\(\left|x+y-2,8\right|+\left|y+z+4\right|+\left|z+x-1,4\right|=0\)
Giúp mk vs.Ai làm được câu nào thì làm!
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Câu a,b,c tương tự nhau cả
Vì mỗi tuyệt đối lớn hơn hoặc bằng 0 0 nên 3 tuyệt đối cộng lại với nhau =0
Khi và chỉ khi mỗi tuyệt đối =0