Chứng minh rằng:75x(41993 + 41992 +....42+4+1)+25 chia hết cho 100
\(\text{Chứng minh A=75x(410+49+48+............+42+4+1)+25 chia hết cho 100}\)
đầu tiên, bạn tính B=4^2004+4^2003+...+4^2+4+1
Xét 4B = 4^2005+4^2004+...+4^2+4
=> 4B-B = (4^2005+4^2004+...4^3+4^2+4) - (4^2004+4^2003+...+4^2+4+1)
=> 3B = 4^2005 - 1 => B = (4^2005 - 1)/3
=> A = 75 (4^2005 - 1)/3 +25
= 25 (4^2005 -1) +25
= 25 x 4 ^ 2005
= 25 x 4 x 4 ^ 2004 = 100 x4 ^ 2004
Chứng minh rằng:
A=75x(42004+ 42003+ ...+ 42+4+1)+25 chia hết cho 100
Chứng minh
A=75x(410+49+48+............+42+4+1)+25 chia hết cho 100
Chứng minh
A=75x(410+49+48+............+42+4+1)+25 chia hết cho 100
Ta có :
\(A=75\left(4^{10}+4^9+...+1\right)+25\)
\(\Rightarrow A=75.4^{10}+75.4^9+....+75.4+75.1+25\)
\(\Rightarrow A=300.4^9+300.4^8+....+300+100\)
=> A chia hết cho 100
Chứng minh
A=75x(410+49+48+............+42+4+1)+25 chia hết cho 100
2. Chứng tỏ rằng M=75.(42021+42020+....+42+4+1)+ 25 chia hết cho 100
\(M=75.4\left(4^{2020}+4^{2019}+...+4+1\right)+75+25=\)
\(=300.\left(4^{2020}+4^{2019}+...+4+1\right)+100=\)
\(=100\left[3.\left(4^{2020}+4^{2019}+...+4+1\right)+1\right]⋮100\)
Chứng tỏ rằng :
A = 75 . ( 42004 + 42003 + ...... + 42 + 4 + 1 ) + 25 là số chia hết cho 100
chứng minh rằng M chia hết cho 100
M=75(42021+42020+...+42+4+1
Ta có M ⋮ 25 vì 75 ⋮ 25
Lại có M = 75 ( 42021 + 42020 + ... + 42 + 4 + 1 )
= 75 . 4 ( 22020 + 22019 + ... + 4 + 1 + 0,25 ) ⋮ 4 vì 4 ⋮ 4
Mà ( 25; 4 ) = 1 ⇒ M ⋮ 100
Vậy M ⋮ 100
Chứng minh rằng: A = 75 . (4^2007 + 4^2006 + … + 4^2 + 4 + 1) + 25 là số chia hết cho 100
đặt S=1+4+42+......+41999S=1+4+42+......+41999
⇒4S=4+42+43+....+42000⇒4S=4+42+43+....+42000
⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)⇒4S−S=(4+42+43+....+42000)−(1+4+42+.....+41999)
⇒3S=42000−1⇒S=42000−13⇒3S=42000−1⇒S=42000−13
Khi đó A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25A=75.S=75.42000−13=75.(42000−1)3=753.(42000−1)=25.(42000−1)=25.42000−25
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
Trong các phép chia sau, phép chia nào là phép chia hết, phép chia nào là phép chia có dư?
Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.
a) 144: 3; b) 144: 13; c) 144: 30.
Phương pháp: Viết kết quả phép chia dạng a = b.q+ r, với 0≤≤ r < b.
Nếu r = 0 thì phép chia hết, nếu 0< r < b thì phép chia có dư
Lời giải chi tiết
144 = 3.48 + 0
=> Phép chia hết
b) 144 = 13.11 + 1
=> Phép chia có dư
c) 144 = 30.4 + 24
=> Phép chia có dư
\(A=75.\left(4^{2004}+4^{2003}+4^2+4+1\right)+25\)
\(A=75.\left(4^{2005}-1\right)\div3+25\)
\(A=25.\left(4^{2005}-1+1\right)\)
\(A=25.4^{2005}⋮100\)