\(\frac{1}{4};\frac{1}{3}và\frac{5}{12}?\)
A=\(\left(\frac{1}{4}+\frac{1}{^{4^2}}+\frac{1}{4^3}+\frac{1}{4^4}\right).4^5+\left(\frac{1}{4^5}+\frac{1}{4^6}+\frac{1}{4^7}+\frac{1}{4^8}\right).4^9+......+\left(\frac{1}{4^{97}}+\frac{1}{4^{98}}\frac{1}{4^{99}}+\frac{1}{4^{100}}\right).4^{101}\)
A=( 4^5/4+4^5/4^2+4^5/4^3+4^5/4^4 )+.....................+ ( 4^101/4^97+....+4^101/4^100 )
A = ( 4^4+ 4^3+4^2+4 ) + .........................................+ ( 4^4 + 4^3+4^2+4)
A= ( 4^4 + 4^ 3+ 4^2+4 ) * ( (101-5):4+1)
A = (4^4+4^3+4^2+4) * 25
A =( 256+81+16+4)*25= 8925
k cho mình nhé
Tính : \(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)\left(7^4+\frac{1}{4}\right)\left(9^4+\frac{1}{4}\right)\left(11^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)\left(8^4+\frac{1}{4}\right)\left(10^4+\frac{1}{4}\right)\left(12^4+\frac{1}{4}\right)}\)
Tính A=\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(11^4+\frac{1}{4}\right)}{\frac{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(12^4+\frac{1}{4}\right)}{ }}\)
Xét số hạng tổng quát:
\(k^4+\frac{1}{4}=\left(k^4+2\cdot\frac{1}{2}\cdot k^2+\frac{1}{4}\right)-k^2\)=\(\left(k^2+\frac{1}{2}\right)^2-k^2\)
= \(\left(k^2+\frac{1}{2}-k\right)\left(k^2+\frac{1}{2}+k\right)\)
Thay k từ 1 đến 12 ta được:
A=\(\frac{\frac{1}{2}\cdot\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)\left(12+\frac{1}{2}\right)...\left(110+\frac{1}{2}\right)\left(132+\frac{1}{2}\right)}{\left(2+\frac{1}{2}\right)\left(6+\frac{1}{2}\right)...\left(132+\frac{1}{2}\right)\left(152+\frac{1}{2}\right)}\)=\(\frac{\frac{1}{2}}{152+\frac{1}{2}}=\frac{1}{305}\)
Vì cộng thêm k2 trong ngoặc nên phải trừ đi k2
\(\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}{\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)-\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}\)+\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}.\frac{1}{4}\)
tính(rútgọn)
\(\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}{\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)-\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}\)+\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}.\frac{1}{4}\)
Tính(rút gọn)
\(\frac{\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}{\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)-\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}\)+\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}.\frac{1}{4}\)
rút gọn
THU GỌN\(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2009^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2010^4+\frac{1}{4}\right)}\)
Tính \(A=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Tính đúng :
\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2013^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2014^4+\frac{1}{4}\right)}\)
Rút gọn: \(S=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(2004^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(2005^4+\frac{1}{4}\right)}\)
Đề hơi nhầm 1 xíu nhé, 2004 ở dưới và 2005 ở trên :v