\(\frac{x-2}{33}=\frac{-132}{2-x}\)
BÀI 1:TÌM X
a)\(\frac{x}{108}=\frac{-7}{9}\times\frac{5}{6}\)
b)\(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
BÀI 2: Tìm p/số nhỏ nhất \(\ne0\)và khi chia p/số đó cho \(\frac{14}{33};\frac{49}{132};\frac{35}{187}\)ta được kết quả là các số tự nhiên
BÀI 1:TÌM x
a)\(\frac{x}{108}=\frac{-7}{9}\times\frac{5}{6}\)
b)\(\frac{x+5}{95}+\frac{x+6}{94}+\frac{x+7}{93}+\frac{x+8}{92}+\frac{x+9}{91}=-5\)
BÀI 2: Tìm p/số nhỏ nhất \(\ne0\)và khi chia p/số đó cho \(\frac{14}{33};\frac{49}{132};\frac{35}{187}\)ta được kết quả là các số tự nhiên
\(\frac{x}{108}=-\frac{7}{9}.\frac{5}{6}\)
\(\frac{x}{108}=-\frac{35}{54}\)
\(\Rightarrow x=\frac{108.-35}{54}=-70\)
bài dưới để làm tiếp cho
\(0,25:\left(10,3-9,8\right)-\frac{3}{4}\\ b,\left(3\frac{4}{5}-2.x\right).1\frac{1}{3}\\ c,\frac{x}{7}=\frac{6}{-21}\\ d,\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{ }{132}\)cái cuối là 1/132
c) x=-2 nha
d) =\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+......+\(\frac{1}{11.12}\)
=\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+.....+\(\frac{1}{11}\)-\(\frac{1}{12}\)
=\(\frac{1}{5}\)-\(\frac{1}{12}\)= \(\frac{7}{60}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}\)
\(=\frac{7}{60}\)
Chọn câu đúng:
A. \(\frac{31}{2}\)x \(\frac{32}{2}\)x\(\frac{33}{2}\)x.....x \(\frac{60}{2}\)= 1x2x3x...x60
B.\(\frac{31}{2}\)x \(\frac{32}{2}\)x\(\frac{33}{2}\)x....x \(\frac{60}{2}\)=1x3x5x7...x59
C.\(\frac{31}{2}\)x\(\frac{32}{2}\)x\(\frac{33}{2}\)x....x \(\frac{60}{2}\)=1x3x5x7...x60
D. \(\frac{31}{2}\)x\(\frac{32}{2}\)x\(\frac{33}{2}\)x....x \(\frac{60}{2}\)= 2x4x6x...x60
giúp mik vs mik đag cần gấp ngay bây h
chọn câu nào thì giải thích giúp mik luôn nha
Tìm x;
(\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)) : x = (\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.......+\frac{1}{132}\))
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)\div x=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{32}\right)\)
\(\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)\div x=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\right)\)
\(\frac{15}{16}\div x=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\right)\)
\(\frac{15}{16}\div x=\left(\frac{1}{1}-\frac{1}{12}\right)\)
\(\frac{15}{16}\div x=\frac{11}{12}\)
\(x=\frac{15}{16}\div\frac{11}{12}\)
\(x=\frac{15}{16}\times\frac{12}{11}\)
\(\Rightarrow x=\frac{180}{176}=\frac{45}{44}\)
tìm x biết: \(\frac{\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)}{x}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
Ta có \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
\(\frac{15}{16}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
\(\frac{15}{16}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(\frac{15}{16}:x=1-\frac{1}{12}\)
\(\frac{15}{16}:x=\frac{11}{12}\)
\(x=\frac{15}{16}:\frac{11}{12}\)
\(x=\frac{180}{176}\)
Đúng thì like nha
1 . Tìm \(x\)
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)\div x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}\)
+ \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
=> \(A=2A-A=1-\frac{1}{16}=\frac{15}{16}\)
+ \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{11x12}\)
\(B=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{12-11}{11x12}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=1-\frac{1}{12}=\frac{11}{12}\)
\(A:x=B\Rightarrow x=A:B=\frac{15}{16}:\frac{11}{12}=\frac{15}{16}x\frac{12}{11}=\frac{45}{44}=1\frac{1}{44}\)
Tìm x biết \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)\div x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}.\)
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+....+\frac{1}{32}\)
\(\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right):x=\frac{1}{1\times2}+\frac{1}{2\times3}+.....+\frac{1}{11\times12}\)
\(\frac{15}{16}:x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{12}\)
\(\frac{15}{16}:x=1-\frac{1}{12}\)
\(\frac{15}{16}:x=\frac{11}{12}\)
\(x=\frac{15}{16}:\frac{11}{12}\)
\(x=\frac{45}{44}\)
Tính \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
2 x A = \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
2 x A - A = A = \(1-\frac{1}{16}=\frac{15}{16}\)
Tính \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{11\times12}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}=\frac{1}{1}-\frac{1}{12}=\frac{11}{12}\)
Ta có: \(\frac{15}{16}:x=\frac{11}{12}\Rightarrow x=\frac{15}{16}:\frac{11}{12}=\frac{15}{16}\times\frac{12}{11}=\frac{45}{44}\)
Vậy...
M = \(\frac{9^2}{90}\)x \(\frac{10^2}{110}\) x \(\frac{11^2}{132}\) x ... x \(\frac{100^2}{10100}\)
\(M=\frac{9^2}{9.10}.\frac{10^2}{10.11}.\frac{11^2}{11.12}.....\frac{100^2}{100.101}\)
\(=\frac{9}{10}.\frac{10}{11}.\frac{11}{12}.....\frac{100}{101}=\frac{9}{101}\)