Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Incursion_03
Xem chi tiết

??? Đăng cái j z

Nguyen Ha Tuong Vien
1 tháng 3 2022 lúc 7:56

ủa toán lớp mấy chứ ko phải lớp 1

Khách vãng lai đã xóa
Ngô Văn Đăng Khoa
1 tháng 3 2022 lúc 8:01

uk ko phải toán lớp 1

Khách vãng lai đã xóa
Lê Phan Lê Na
Xem chi tiết
Y
14 tháng 5 2019 lúc 18:13

Đặt \(a=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}\)

\(b=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\)

Khi đó : \(D=ab-\left(b+1\right)\left(a-1\right)\)

\(\Rightarrow D=ab-\left(ab+a-b-1\right)\)

\(\Rightarrow D=b-a+1=\frac{1}{2020^2}-1+1=\frac{1}{2020^2}\)

Nguyễn Thị Thùy Dương
Xem chi tiết
Hùng Hoàng
30 tháng 11 2015 lúc 21:16

\(1+\frac{1+\frac{1+\frac{3}{2}}{2}}{2}=1+\frac{1+\frac{\frac{5}{2}}{2}}{2}=1+\frac{1+\frac{5}{4}}{2}=1+\frac{\frac{9}{4}}{2}=1+\frac{9}{8}=\frac{17}{8}\)

\(1+\frac{2}{1+\frac{2}{1+\frac{2}{3}}}=1+\frac{2}{1+\frac{2}{\frac{5}{3}}}=1+\frac{2}{1+\frac{6}{5}}=1+\frac{2}{\frac{11}{5}}=1+\frac{10}{11}=\frac{21}{11}\)

\(1+\frac{1+\frac{1+\frac{2}{3}}{3}}{3}=1+\frac{1+\frac{\frac{5}{3}}{3}}{3}=1+\frac{1+\frac{5}{9}}{3}=1+\frac{\frac{14}{9}}{3}=1+\frac{14}{27}=\frac{41}{27}\)

\(\frac{3}{\frac{3}{\frac{3}{\frac{3}{2}+1}+1}+1}+1=1+\frac{3}{\frac{3}{\frac{3}{\frac{5}{2}}+1}+1}=1+\frac{3}{\frac{3}{\frac{6}{5}+1}+1}=1+\frac{3}{\frac{15}{11}+1}=\frac{59}{26}\)

suy ra

\(\frac{\frac{17}{18}}{\frac{21}{11}}-x=\frac{187}{378}-x=\frac{\frac{41}{27}}{\frac{59}{26}}=\frac{1066}{1593}\Rightarrow x=-\frac{1297}{7434}\)

 

ha duy to
30 tháng 11 2015 lúc 20:58

toàn là những bài toán khó vậy

Nguyễn Quốc Khánh
30 tháng 11 2015 lúc 21:12

\(\frac{1+\frac{1+\frac{5}{4}}{2}}{1+\frac{2}{1+\frac{6}{5}}}-x=\frac{\frac{\frac{\frac{5}{3}}{3}+1}{3}+1}{\frac{3}{\frac{\frac{3}{2}+1}{\frac{5}{2}}}+1}\)

\(\frac{1+\frac{9}{\frac{4}{2}}}{1+\frac{2}{\frac{11}{5}}}-x=\frac{\frac{\frac{14}{9}}{3}+1}{\frac{3}{1}+1}\)

 

Robert Lewandwski
Xem chi tiết
Trần Phương Anh
13 tháng 5 2019 lúc 16:36

M = 0

Gà Game thủ
13 tháng 5 2019 lúc 18:49

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)(1-1)\)

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right).0\)

\(M=0\)

dinh lenh duc dung
18 tháng 5 2019 lúc 20:17

Vì số bị trừ và số trừ gồm hai tích đảo ngược nhau nên M=0

Nguyễn Châu Mỹ Linh
Xem chi tiết
Hoàng Ngô Diệu
Xem chi tiết
Vu Thi Nhuong
8 tháng 9 2015 lúc 23:15

Xét \(P=\sqrt{\frac{1}{1^2}+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\) với a>0 

  \(P^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}\) 

           \(=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\) 

           \(=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\) 

           \(=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\) 

           \(=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\) 

           \(=\left(\frac{a^2+a+1}{a\left(a+1\right)}\right)^2\) 

Do a>o nên \(P=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\) 

Áp dụng kết quả của P ta có:

 \(A=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}+\frac{1}{3}\right)+....+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\)      \(A=2012+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2012}-\frac{1}{2013}\right)\)  

\(A=2012+1-\frac{1}{2013}\)

\(A=2013-\frac{1}{2013}=\frac{4052168}{2013}\) 

Vậy \(A=\frac{4052168}{2013}\)

Nhím Tatoo
Xem chi tiết
Nhím Tatoo
8 tháng 7 2016 lúc 9:43

các bn ơi giải giúp mình đi mà

Pham hong duc
Xem chi tiết
☆☆《Thiên Phi 》☆☆
6 tháng 4 2019 lúc 23:27

Bạn hỏi hay trả lời luôn dzậy?

Bùi Thị Hằng Trang
Xem chi tiết
ST
2 tháng 5 2017 lúc 21:06

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

ST
2 tháng 5 2017 lúc 21:20

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)

ST
2 tháng 5 2017 lúc 21:34

c, Đặt C = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)

\(C=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(C=\left(1+1+1+....+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)

\(C=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)

Đặt D là biểu thức trong ngoặc

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow-D>-1\)

=>\(C=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>49-1=48\)

Vậy C > 48

Trang Nguyễn
Xem chi tiết
svtkvtm
27 tháng 7 2019 lúc 11:26

\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+.....-\frac{1}{2^{99}}\Rightarrow2A+A=3A=\left(1-\frac{1}{2}+\frac{1}{2^2}-....-\frac{1}{2^{99}}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+......-\frac{1}{2^{100}}\right)=1-\frac{1}{2^{100}}=\frac{2^{100}-1}{2^{100}}\Rightarrow A=\frac{2^{100}-1}{3.2^{100}}\)

\(2,4B=2+\frac{1}{2}+\frac{1}{2^3}+.....+\frac{1}{2^{97}}\Rightarrow4B-B=3B=\left(2+\frac{1}{2}+....+\frac{1}{2^{97}}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right)=2-\frac{1}{2^{99}}=\frac{2^{100}-1}{2^{99}}\Rightarrow B=\frac{2^{100}-1}{3.2^{99}}\)

\(3,C=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-....-\frac{1}{2^{58}}\Rightarrow8C=4-\frac{1}{2}+\frac{1}{2^4}-.....-\frac{1}{2^{55}}\Rightarrow8C+C=9C=\left(4-\frac{1}{2}+\frac{1}{2^4}-....-\frac{1}{2^{55}}\right)+\left(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-....-\frac{1}{2^{58}}\right)=4-\frac{1}{2^{58}}=\frac{2^{60}-1}{2^{58}}\Rightarrow C=\frac{2^{60}-1}{9.2^{58}}\)