Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ThanhNghiem
Xem chi tiết
2611
29 tháng 9 2023 lúc 20:36

`a)D` xác định `<=>a-1 ne 0<=>a ne 1`

`b)` Với `a ne 1` có:

`D=([a-1]/[a^2+a+1]-[1-3a+a^2]/[(a-1)(a^2+a+1)]-1/[a-1]).[1-a]/[a^2+1]`

`D=[(a-1)^2-1+3a-a^2-a^2-a-1]/[(a-1)(a^2+a+1)].[-(a-1)]/[a^2+1]`

`D=[a^2-2a+1-1+3a-a^2-a^2-a-1]/[(-a^2-1)(a^2+a+1)]`

`D=[-a^2-1]/[(-a^2-1)(a^2+a+1)]=1/[a^2+a+1]`

`c)` Với `a ne 1` có:

`1/D=1/[1/[a^2+a+1]]=a^2+a+1=(a+1/2)^2+3/4`

Vì `(a+1/2)^2 >= 0 AA a ne 1`

   `=>(a+1/2)^2+3/4 >= 3/4 AA a ne 1`

  Hay `1/D >= 3/4 AA a ne 1=>1/D  _[mi n]=3/4`

Dấu "`=`" xảy ra `<=>a=-1/2` (t/m).

Chira Nguyên
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 17:00

\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

\(A_{min}=3\) khi \(a=1\)

lê thanh tùng
Xem chi tiết
nguyen huu hong son
Xem chi tiết
Trần Đức Long
9 tháng 4 2017 lúc 0:19

A=a^4 -2a^3 + 3a^2 -4a+5

A=(a^4 -2a^3 +a^2)+(2a^2 -4a+2)+3

A=(a^2 -a)^2 +2(a^2 -2a+1)+3

A=((a^2 -a)^2 +2(a-1)^2 +3

Vì (a^2 -a)^2 +2(a-1)^2 +3 >hoặc=3 với mọi a.Dấu"=" xảy ra khi a=1

Hay:A>hoặc=3.Dấu"=" xảy ra khi a=1

Vậy giá trị nhỏ nhất A=3 tại a=1. Bạn nhớ nếu nó hỏi Min thì mới kết luận là Min còn hỏi GTNN thì kết luận GTNN.

hoàng thị hoa
Xem chi tiết
FUCK
Xem chi tiết
Nguyễn Duy Thái
1 tháng 3 2016 lúc 20:13

Câu 1 nha bạn 

x^4 + x^3 + x^2 + 2014x^2 + 2014x + 2014 + 1 - x^3

=> x^4 + x^3 + x^2 + 2014x^2 + 2014x + 2014 - x^3 - 1

=> x^2 ( x^2 + x + 1 ) + 2014 ( x^2 + x + 1 ) - ( x - 1 )( x^2 + x + 1 ) 

=> ( x^2 + x + 1 )( x^2 + 2014 - x - 1)

Hà Văn Minh Hiếu
Xem chi tiết
Tran Le Khanh Linh
20 tháng 3 2020 lúc 21:15

\(A=a^4-2a^3+3a^2-4a+5\)

\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)

\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)

Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)

Vậy Min A=3 đạt được khi a=1

Nguồn: DORAEMON (lazi.vn)

Khách vãng lai đã xóa
Hà Văn Minh Hiếu
Xem chi tiết
Nguyễn Linh Chi
22 tháng 3 2020 lúc 23:23

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo.

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết