Cho a thuộc [1, 1]. Tìm giá trị nhỏ nhất của biểu thức a^5 -3a^4 +a^3 +8a^2 -14a +1\(a^3-a^2-3a+4)
Cho biểu thức D=(\(\dfrac{a-1}{3a+\left(a-1\right)^2}\)-\(\dfrac{1-3a+a^2}{a^3-1}\)-\(\dfrac{1}{a-1}\)) : \(\dfrac{a^2+1}{1-a}\)
a) Tìm những giá trị của a để D xác định
b)Rút gọn D
c)Tìm giá trị của a để \(\dfrac{1}{D}\)nhỏ nhất và tìm giá trị nhỏ nhất đó
`a)D` xác định `<=>a-1 ne 0<=>a ne 1`
`b)` Với `a ne 1` có:
`D=([a-1]/[a^2+a+1]-[1-3a+a^2]/[(a-1)(a^2+a+1)]-1/[a-1]).[1-a]/[a^2+1]`
`D=[(a-1)^2-1+3a-a^2-a^2-a-1]/[(a-1)(a^2+a+1)].[-(a-1)]/[a^2+1]`
`D=[a^2-2a+1-1+3a-a^2-a^2-a-1]/[(-a^2-1)(a^2+a+1)]`
`D=[-a^2-1]/[(-a^2-1)(a^2+a+1)]=1/[a^2+a+1]`
`c)` Với `a ne 1` có:
`1/D=1/[1/[a^2+a+1]]=a^2+a+1=(a+1/2)^2+3/4`
Vì `(a+1/2)^2 >= 0 AA a ne 1`
`=>(a+1/2)^2+3/4 >= 3/4 AA a ne 1`
Hay `1/D >= 3/4 AA a ne 1=>1/D _[mi n]=3/4`
Dấu "`=`" xảy ra `<=>a=-1/2` (t/m).
Tìm giá trị nhỏ nhất của biểu thức A :
A= \(a^4-2a^3+3a^2-4a+5\)
\(A=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)
\(A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
\(A_{min}=3\) khi \(a=1\)
bài 1)tìm số nguyên x dể giá trị của các biểu thức là số nguyên
a)A=2x^2-5x+3/2x-5
b)B=3x^3+9x^2-x-5/x+3
bài 2 )tính giá trị biểu thữc
a)C=5a-b/3a+7 + 3b-2a/2b-7 biết 2a-b=7 a khác 7/-3 và b khác 7/2
b)D=8a+5b/5a-1 + 3a+b/4b+1 biết 3a+5b=-1 a khác 1/5 và b khác -1/4
1,tìm giá trị nhỏ nhất của A=a^4-2a^3+3a^2-4a+5
A=a^4 -2a^3 + 3a^2 -4a+5
A=(a^4 -2a^3 +a^2)+(2a^2 -4a+2)+3
A=(a^2 -a)^2 +2(a^2 -2a+1)+3
A=((a^2 -a)^2 +2(a-1)^2 +3
Vì (a^2 -a)^2 +2(a-1)^2 +3 >hoặc=3 với mọi a.Dấu"=" xảy ra khi a=1
Hay:A>hoặc=3.Dấu"=" xảy ra khi a=1
Vậy giá trị nhỏ nhất A=3 tại a=1. Bạn nhớ nếu nó hỏi Min thì mới kết luận là Min còn hỏi GTNN thì kết luận GTNN.
Tìm các giá trị của a sao cho mỗi biểu thức có giá trị bằng 2
a) \(\frac{2a^2-3a-2}{a^2-4}\)
b)\(\frac{3a-1}{3a+1}+\frac{a-3}{a+3}\)
Phân tích thành tích: x^4+2015x^2+2014x+2015
Tìm giá trị nhỏ nhất của biểu thức A =a^4-2a^3+3a^2-4a+5
Câu 1 nha bạn
x^4 + x^3 + x^2 + 2014x^2 + 2014x + 2014 + 1 - x^3
=> x^4 + x^3 + x^2 + 2014x^2 + 2014x + 2014 - x^3 - 1
=> x^2 ( x^2 + x + 1 ) + 2014 ( x^2 + x + 1 ) - ( x - 1 )( x^2 + x + 1 )
=> ( x^2 + x + 1 )( x^2 + 2014 - x - 1)
Tìm giá trị nhỏ nhất của biểu thức A = a4-2a3+3a2-4a+5
\(A=a^4-2a^3+3a^2-4a+5\)
\(\Leftrightarrow A=a^4-2a^3+a^2+2a^2-4a+2+3\)
\(\Leftrightarrow A=\left(a^4-2a^3+^2\right)+2\left(a^2-2a+1\right)+3\)
\(\Leftrightarrow A=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\)
Có:\(\hept{\begin{cases}\left(a^2-a\right)^2\ge0\forall x\\2\left(a-1\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow A\ge3\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}a^2-a=0\\a-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2=a\\a=1\end{cases}}}\)
Vậy Min A=3 đạt được khi a=1
Nguồn: DORAEMON (lazi.vn)
Tìm giá trị nhỏ nhất của biểu thức A=a4-2a3+3a2-4a+5.
Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo.
tìm giá trị nhỏ nhất của biểu thức A = a4 - 2a3 + 3a2 - 4a + 5