cho tỉ lệ thức a+b+c/a+b-c = a-b+c/a-b-c trong đó b khác 0 . chứng minh rằng c = 0
cho tỉ lệ thức
a+b+c/a+b-c = a-b+c/a-b-c trong đó b khác 0. chứng minh rằng c=0
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
Theo t/c dãy tỉ số=nhau,ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\frac{2b}{2b}=1\)
\(=>a+b+c=a+b-c=>c=-c=>c-\left(-c\right)=0\)
\(=>c+c=0=>2c=0=>c=0\)
Vậy c=0
cần 2 trường hợp:
- a+b=0
- a+b khác 0 là trường hợp đã làm
Cho tỉ lệ thức a+b+c/a+b-c = a-b+c/ a-b-c ( b khác 0). Chứng minh rằng c=0
Theo tính chất tỉ lệ thức :
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)+\left(a-b+c\right)}{\left(a+b-c\right)+\left(a-b-c\right)}=\frac{a+c}{a-c}\) (1)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}=\frac{2b}{2b}\) (2)
Từ (1) và (2) => \(\frac{a+c}{a-c}=1\)
=> a + c = a - c
=> 2c = 0
=> c = 0
cho tỉ lệ thức a+b+c/a+b-c=a-b+c/a-b-c trong đó b khác o. Chứng minh c=0
Ta có \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\frac{2b}{2b}=1\)(dãy tỉ số bằng nhau)
Khi đó a + b + c = a + b - c
<=> c = - c
<=> 2 x c = 0
<=> c = 0(đpcm)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)
\(\left(a+b+c\right)\left(a-b-c\right)=\left(a-b+c\right)\left(a+b-c\right)\)
\(a^2+ab+ac-ab-b^2-bc-ac-bc-c^2=a^2+ab-ac-ab-b^2+bc+ac+cb-c^2\)
\(a^2-b^2-c^2-2bc=a^2-b^2-c^2+2bc\)
\(-2bc=2bc\)
mà \(b\ne0\)
thì \(-2bc;2bc\)trái dấu
vậy để \(-2bc=2bc\)thì \(c=0\)
\(< =>ĐPCM\)
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0 , c - d khác 0 ) ta có thể suy ra tỉ lệ thức a+b/a-b = c + d/c-d
đặt x/2=y/5=k
=> x=2k, y=5k
ta có: 5kx2k=10
=> 10k^2=10
=> k^2=1
=> k=±1
với k=1=> x=2x1=2 ; y=1x5=5
với k=-1=> x=-1x2=-2 ; y=-1x5=-5
\(\frac{x}{2}=\frac{y}{5}\Rightarrow5x=2y\)(1)
=>5x-2y=0
=>-(2y-5x)=0
=>2y-5x=0 (1)
xy=10 (2)
=>ta có:\(\int^{2y-5x=0}_{xy=10}\)
giải ra ta đc:x=±2;y=±5
Chứng minh rằng từ tỉ lệ thức a/b=c/d (a - b khác 0, c - d khác 0 ) ta có thể suy ra tỉ lệ thức( a+b/a-b ) = (c+d / c- d )
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đpcm)
ta có a/b , c/d suy ra AB=CD
và ta có : AD + AB = BC + AB
hoặc 1 cách nữa là : A . ( B+D ) = B ( A.C) (1)
và đề cho B và D khác ko => B+D không bằng 0
=> từ ( 1) ta có đc 1 tỉ lệ thức :
=> A/B = A+C phần B+D
Chứng minh rằng từ tỉ lệ thức: a/b=c/d ( a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức: a+b/a-b=c+d/c-d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(điều phải chứng minh)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh rằng từ tỉ lệ thức a/b=c/d (a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức a+b/a-b=c+d/c-d
Ta có :a/b = c/d suy ra a/c = b/d
áp dụng tính chất dãy tính chất tỉ số bằng nhau
a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d
Chứng minh rằng từ tỉ lệ thức a/b=c/d (a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức a+b/a-b = c+d/c-d
Chứng minh rằng từ tỉ lệ thức a/b = c/d ( a - b khác 0, c - d khác 0 ), ta có thể suy ra tỉ lệ thức a + b/a - b = c + d/c - d.
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k;b=d.k\)
Ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
+) \(\frac{a+b}{c+d}=\frac{b.k+b}{d.k+d}=\frac{b.\left(k+1\right)}{d.\left(k+1\right)}=\frac{b}{d}\) (1)
+) \(\frac{a-b}{c-d}=\frac{b.k-b}{d.k-d}=\frac{b.\left(k-1\right)}{d.\left(k-1\right)}=\frac{b}{d}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Rightarrowđpcm\)
Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d