Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thảo nguyễn thị
Xem chi tiết
Quang Đẹp Trai
Xem chi tiết
lipphangphangxi nguyen k...
Xem chi tiết
Nguyễn Thị Thu Hiền
16 tháng 4 2016 lúc 22:08

bạn ấy ko biết thì bạn ấy hỏi sao câu lại chửi cậu ấy là ngu

Tran van Hien
16 tháng 4 2016 lúc 22:00

Ngu NGU NGU. Hà hà

Hot Boy
16 tháng 4 2016 lúc 22:09

bn ơi đừng chửi người khác vậy

Blue Moon
Xem chi tiết
Đặng Phương Nga
Xem chi tiết
Kudo Shinichi
4 tháng 10 2019 lúc 21:30

Áp dụng BĐT AM - GM ta có :

\(P=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)

\(\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)

\(=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{xy+yz+xz}{xyz}\)

\(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\le\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!

Bờ lều bờ lếu
Xem chi tiết
Incursion_03
1 tháng 4 2019 lúc 22:40

*Max

Có: \(x^2+4\ge4x\)

        \(y^2+4\ge4y\)

      \(z^2+4\ge4z\)

\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)

Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)


Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)

                                                                                                     \(=\frac{5.12+12}{4}=18\)

"=" KHI x = y= z = 2

*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                                                      \(=\left(x+y+z\right)^2\ge0\)

\(\Rightarrow xy+yz+zx\ge-6\)

Dấu "=" xảy ra <=> x + y + z = 0

Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)

Dấu "=" <=> x + y + z = 0 và x+ y2 + z2 = 12

Bờ lều bờ lếu
2 tháng 4 2019 lúc 23:35

bạn ơi mình giải thế này thì sao nhỉ:

đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)

\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)

dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)

bạn xem thử hộ mik cái =)

Nguyễn Anh Tuấn
Xem chi tiết
Thuhuyen Le
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
Edogawa Conan
27 tháng 7 2021 lúc 15:42

Ta có: \(P=\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+xz}\)

\(P=\frac{\sqrt{x}}{xy+x+1}+\frac{x\sqrt{y}}{x+xy+xyz}+\frac{xy\sqrt{z}}{xy+xyz+x^2yz}\)

\(P=\frac{\sqrt{x}}{xy+x+1}+\frac{x\sqrt{y}}{xy+x+1}+\frac{\sqrt{xy}.\sqrt{xyz}}{xy+x+1}\)

\(P=\frac{\sqrt{x}+x\sqrt{y}+\sqrt{xy}}{xy+x+1}\le\frac{\frac{x+1}{2}+\frac{x\left(y+1\right)}{2}+\frac{xy+1}{2}}{xy+x+1}\) (bđt cosi)

=> \(P\le\frac{x+1+xy+x+xy+1}{2\left(xy+x+1\right)}=\frac{2\left(xy+x+1\right)}{2\left(xy+x+1\right)}=1\)

Dấu "=" xảy ra<=> x =  y = z = 1

Vậy MaxP = 1 <=> x = y = z = 1

Khách vãng lai đã xóa