Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Minh Long
Xem chi tiết
Nguyễn Văn Nam
Xem chi tiết
đoàn mạnh  trí
Xem chi tiết
Mai Nguyễn Bảo Ngọc
Xem chi tiết
Trương Trần Duy Tân
Xem chi tiết
_Công chúa nhỏ _
25 tháng 12 2015 lúc 23:07

a(b-c)^2+b(a-c)^2+c(a-b)^2- a^3 -b^3 -c^3 +4abc 
=a[(b-c)^2-a^2)]+ b[(a-c)^2-b^2)]+c[(a-b)^2-c^2)]+4abc 
=a[(b-c)^2-a^2)]+ b[(a+c)^2-b^2)]+c[(a-b)^2-c^2)] 
=a(b-c-a)(b-c+a)+b(a+c-b)(a+b+c)+c(a+c... 
=[-a(b-c+a)+b(a+b+c)+c(a-b-c)](a+c-b) 
em cu tiếp tục phân tích cái vế trong ngoặc vuông đuọc (a+b-c)(b+c-a) la d'c em nha 
dap so la :(a+c-b)(a+b-c)(b+c-a) 

           tick nha !!!

Nguyễn Đình Đông
25 tháng 12 2015 lúc 23:10

pá đạo quá lớp 7 làm bài lớp 8 ak

Ngô Thị Hà
26 tháng 12 2015 lúc 4:44

CHTT nha bạn ! 

Ngọc Thiện Hồ
Xem chi tiết
Kurosaki Akatsu
Xem chi tiết
Thắng Nguyễn
18 tháng 6 2017 lúc 9:38

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

nhân ngược lại ra hay đặt ản thì tùy nhé =))

Phạm Tuấn Đạt
20 tháng 6 2018 lúc 9:19

\(a,c\left(a+b\right)^2+b\left(c+a\right)^2+a\left(b+c\right)^2-4abc\)

\(=c\left(a+b\right)^2+bc^2+2abc+a^2b+ab^2+2abc+ac^2-4abc\)

\(=c\left(a+b\right)^2+\left(bc^2+ac^2\right)+\left(a^2b+ab^2\right)\)

\(=c\left(a+b\right)^2+c^2\left(a+b\right)+ab\left(a+b\right)\)

\(=\left(a+b\right)\left(ac+cb+c^2+ab\right)\)

\(=\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Lizy
Xem chi tiết
meme
12 tháng 9 2023 lúc 14:11

(a(b-c)^2 + b(c-a)^2 + c(a-b)^2) - (a^3 + b^3 + c^3) + 4abc

= a(b^2 - 2bc + c^2) + b(c^2 - 2ac + a^2) + c(a^2 - 2ab + b^2) - (a^3 + b^3 + c^3) + 4abc

= ab^2 - 2abc + ac^2 + bc^2 - 2abc + ba^2 + ca^2 - 2abc + cb^2 - a^3 - b^3 - c^3 + 4abc

= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 - a^3 - b^3 - c^3 + 4abc - 6abc

= a(b^2 + c^2 + a^2) + b(a^2 + c^2 + b^2) + c(a^2 + b^2 + c^2) - (a^3 + b^3 + c^3) - 2abc

= a^3 + b^3 + c^3 + a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - a^3 - b^3 - c^3 - 2abc

= a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - 2abc

= ab(a + b) + ac(a + c) + bc(b + c) - 2abc

= (a + b)(ab - ac + bc) - 2abc

Vậy, ta có thể viết bài toán dưới dạng nhân tử là: (a + b)(ab - ac + bc) - 2abc.

Trần Thu Phương
Xem chi tiết
Trần Thùy Dương
1 tháng 11 2018 lúc 20:46

\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2-a^3-b^3-c^3+4abc\)

\(=a\left(b-c\right)^2-a^3+4abc+b\left(c-a\right)^2-b^3+c\left(a-b\right)^2-c^3\)

\(=a\left[\left(b-c\right)^2+4bc-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left[\left(b+c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a-b\right)^2-c^2\right]\)

\(=a\left(b+c+a\right)\left(b+c-a\right)+b\left(c-a+b\right)\left(c-a-b\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[a\left(b+c+a\right)+b\left(c-a-b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[ab+ac+a^2+bc-ab-b^2\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left[c\left(a+b\right)+\left(a-b\right)\left(a+b\right)\right]+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(b+c-a\right)\left(a+b\right)\left(a-b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

\(=\left(a-b+c\right)\left[b^2-\left(a-c\right)^2\right]\)

\(=\left(a-b+c\right)\left(b+a-c\right)\left(b-a+c\right)\)