Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đức Thắng
Xem chi tiết
Mr Lazy
20 tháng 11 2015 lúc 22:27

\(\Leftrightarrow2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)\le abc\)

\(\Leftrightarrow\left(2p-2a\right)\left(2p-2b\right)\left(2p-2c\right)\le abc\)

\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)

Đặt \(a+b-c=x;\text{ }b+c-a=y;\text{ }c+a-b=z\)

Thì \(a=\frac{x+z}{2};\text{ }b=\frac{y+x}{2};\text{ }c=\frac{z+y}{2}\)

Nên cần chứng minh: 

\(xyz\le\frac{1}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Điều này là hiển nhiên khi ta áp dụng bđt Côsi cho VP.

Vậy ta có đpcm.

Ice Wings
20 tháng 11 2015 lúc 22:15

sorry, em mới học lớp 6 thui à

hoàng thị huyền trang
Xem chi tiết
Thắng Nguyễn
20 tháng 2 2018 lúc 20:15

a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(p=\frac{a+b+c}{2}\right)\)

Tương tự rồi cộng theo vế:

\(2VT\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=2VP\Leftrightarrow VT\ge VP\)

Dấu "=" khi \(a=b=c\)

b)sai đề

Phan Thị Hà Vy
Xem chi tiết
Nguyễn Tất Đạt
14 tháng 4 2018 lúc 12:32

Do p là nửa chu vi tam giác nên \(2p=a+b+c\)

Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Áp dụng vào bài toán: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)

Dấu "=" xảy ra khi a=b=c.

Nguyên Nguyễn Khôi
Xem chi tiết
unique unusual
6 tháng 3 2016 lúc 23:15

áp dụng BĐT 1/x+1/y>=4/x+y ấy

Huỳnh Gia Phú
Xem chi tiết
Ngọc Phan
Xem chi tiết
Ngốc Ngố Lại
Xem chi tiết
Trịnh Quang Hùng
21 tháng 8 2015 lúc 22:36

Ta sẽ áp dụng BĐT sau vào bài tập này \(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\le\frac{\left(a+b+c\right)^2}{m+n+p}\)dấu "=" xảy ra khi \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}\)

Ta có \(p-a=\frac{a+b+c}{2}-a=\frac{a+b+c-2a}{2}\)\(\Leftrightarrow\)\(p-a=\frac{b+c-a}{2}\)

\(\Leftrightarrow\)\(\frac{1}{p-a}=\frac{2}{b+c-a}\).Tương tự\(\frac{1}{p-b}=\frac{2}{a+c-b}\);\(\frac{1}{p-c}=\frac{2}{b+a-c}\)

nên \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)

Áp dụng BĐT trên ta có \(\frac{1}{b+c-a}=\frac{\left(1+1-1\right)^2}{b+c-a}\ge\frac{1}{c}+\frac{1}{b}-\frac{1}{a}\);\(\frac{1}{a+c-b}\ge\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\);\(\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)

Vậy \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)\)

 

Kết bạn với mình có gì tiện hỏi nhau nha có gì khó cứ gửi

Vũ Phương Anh
8 tháng 10 2017 lúc 11:59

bài này cũng gần giống nè giúp mk vs  

cho a b c là độ dài 3 cạnh tam giác p là nửa chu vi ab/(p-c) + bc/(p-a) + ca/(p-b)>=4p

Nguyễn Hữu Hoàng Hải Anh
31 tháng 3 2018 lúc 20:39

đây là toán lớp 8 hôm qua cô vừa dạy xog này dễ v

kagamine rin len
Xem chi tiết
Thiện Khánh Lâm
25 tháng 4 2016 lúc 22:15

Dễ dàng chứng minh bất đẳng thức phụ : 1a+1b≥4a+b∀a;b>01a+1b≥4a+b∀a;b>0

Và p−a;p−b;p−c>0p−a;p−b;p−c>0 theo bất đẳng thức trong tam giác.

Áp dụng bất đẳng thức phụ vừa chứng minh, ta có:

1p−a+1p−b≥42p−a−b=4c1p−a+1p−b≥42p−a−b=4c (1)(1)

1p−b+1p−c≥42p−b−c=4a1p−b+1p−c≥42p−b−c=4a (2)(2)

1p−c+1p−a≥42p−c−a=4b1p−c+1p−a≥42p−c−a=4b (3)(3)

Cộng 1;2;31;2;3 vế theo vế, ta được:

2(1p−a+1p−c+1p−c)≥4(1a+1b+1c)2(1p−a+1p−c+1p−c)≥4(1a+1b+1c)

Bảo Châu Ngô
25 tháng 4 2016 lúc 22:22

. Áp dụng BĐT Schwarz cho 3 số trên là ra thoy =))

nguyen khanh linh
Xem chi tiết
Lan Lan
26 tháng 4 2017 lúc 11:23

C đã làm được chưa giải giúp mình vs