cho a,b,c là các các cạnh của 1 tam giác p là nửa chu vi CMR 1/(p-a)+1/(p-b)+1/(p-c) >= 291/a+1/b+1/c)
Cho a ; b; c là độ dài ba cạnh của 1 tam giác . P là nửa chu vi của tam giác đó . CMR :
( p - a )( p - b )( p - c ) <= 1/8abc
\(\Leftrightarrow2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)\le abc\)
\(\Leftrightarrow\left(2p-2a\right)\left(2p-2b\right)\left(2p-2c\right)\le abc\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
Đặt \(a+b-c=x;\text{ }b+c-a=y;\text{ }c+a-b=z\)
Thì \(a=\frac{x+z}{2};\text{ }b=\frac{y+x}{2};\text{ }c=\frac{z+y}{2}\)
Nên cần chứng minh:
\(xyz\le\frac{1}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Điều này là hiển nhiên khi ta áp dụng bđt Côsi cho VP.
Vậy ta có đpcm.
a) cho a,b,c là 3 cạnh của một tam giác , p là nửa chu vi. CMR \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
b) Cho a,b,c,d là các số dương.CMR \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(p=\frac{a+b+c}{2}\right)\)
Tương tự rồi cộng theo vế:
\(2VT\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=2VP\Leftrightarrow VT\ge VP\)
Dấu "=" khi \(a=b=c\)
b)sai đề
Cho a,b,c là độ dài ba cạnh của một tam giác và p là nửa chu vi của tam giác. CMR: \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\). Dấu "=" xảy ra khi nào?
Do p là nửa chu vi tam giác nên \(2p=a+b+c\)
Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Áp dụng vào bài toán:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)
Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)
\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)
Dấu "=" xảy ra khi a=b=c.
Cho a, b, c là số đo các cạnh của một tam giác và p là nửa chu vi của tam giác đó. Chứng minh \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho \(a,b,c\) là độ dài các cạnh của một tam giác và \(p\) là nửa chu vi của tam giác đó . CMR :
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a, b, c là độ dài ba cạnh của một tam giác, p là nửa chu vi. CMR:\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a, b, c, p lần lượt là số đo các cạnh và nửa chu vi của một tam giác.
Chứng minh: 1/p-a + 1/p-b + 1/p-c >= 2(1/a + 1/b + 1/c)
Đẳng thức sảy ra khi nào?
Ta sẽ áp dụng BĐT sau vào bài tập này \(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\le\frac{\left(a+b+c\right)^2}{m+n+p}\)dấu "=" xảy ra khi \(\frac{a}{m}=\frac{b}{n}=\frac{c}{p}\)
Ta có \(p-a=\frac{a+b+c}{2}-a=\frac{a+b+c-2a}{2}\)\(\Leftrightarrow\)\(p-a=\frac{b+c-a}{2}\)
\(\Leftrightarrow\)\(\frac{1}{p-a}=\frac{2}{b+c-a}\).Tương tự\(\frac{1}{p-b}=\frac{2}{a+c-b}\);\(\frac{1}{p-c}=\frac{2}{b+a-c}\)
nên \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)
Áp dụng BĐT trên ta có \(\frac{1}{b+c-a}=\frac{\left(1+1-1\right)^2}{b+c-a}\ge\frac{1}{c}+\frac{1}{b}-\frac{1}{a}\);\(\frac{1}{a+c-b}\ge\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\);\(\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)
Vậy \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)\)
Kết bạn với mình có gì tiện hỏi nhau nha có gì khó cứ gửi
bài này cũng gần giống nè giúp mk vs
cho a b c là độ dài 3 cạnh tam giác p là nửa chu vi ab/(p-c) + bc/(p-a) + ca/(p-b)>=4p
đây là toán lớp 8 hôm qua cô vừa dạy xog này dễ v
cho a,b,c,p là động dài 3 cạnh và nửa chu vi của một tam giác CMR
1/p-a+1/p-b+1/p-c>/ 2(1/a+1/p+1/c)
Dễ dàng chứng minh bất đẳng thức phụ : 1a+1b≥4a+b∀a;b>01a+1b≥4a+b∀a;b>0
Và p−a;p−b;p−c>0p−a;p−b;p−c>0 theo bất đẳng thức trong tam giác.
Áp dụng bất đẳng thức phụ vừa chứng minh, ta có:
1p−a+1p−b≥42p−a−b=4c1p−a+1p−b≥42p−a−b=4c (1)(1)
1p−b+1p−c≥42p−b−c=4a1p−b+1p−c≥42p−b−c=4a (2)(2)
1p−c+1p−a≥42p−c−a=4b1p−c+1p−a≥42p−c−a=4b (3)(3)
Cộng 1;2;31;2;3 vế theo vế, ta được:
2(1p−a+1p−c+1p−c)≥4(1a+1b+1c)2(1p−a+1p−c+1p−c)≥4(1a+1b+1c)
. Áp dụng BĐT Schwarz cho 3 số trên là ra thoy =))
Chứng minh rằng
a) 1/a + 1/b >= 4/ a+b với a,b >0
b) 1/ p-a + 1/p-b + 1/ p-c >= 2 * ( 1/a + 1/b + 1/c)
với a,b,c là độ dài ba cạnh của tam giác, p là nửa chu vi của tam giác đó