\(\frac{a}{r}=\frac{b}{y}=\frac{c}{d}=4\)VÀ r x 3y+2d khác 0
TÍNH \(\frac{a-3b+2c}{r-3y+2d}\)
bài 1: cho \(\frac{a}{b}\)=\(\frac{c}{d}\).CMR:
a,\(\frac{a}{b}=\frac{c}{d}=\frac{2a+c}{2b+d}\)
b,\(\frac{2a-c}{2b-d}=\frac{3a+2c}{3b+2d}\)
giúp mk vs mk cần gấp,chiều nay học rùi.Cảm ơn mn nhìu lắm!!!
a, \(\frac{a}{b}=\frac{2a}{2b}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a}{2b}=\frac{c}{d}=\frac{2a+c}{2b+d}\)
Tương tự, bạn áp dụng tính chất dãy tỉ số bằng nhau là ra
cho \(\frac{a}{x}\)=\(\frac{b}{y}\)=\(\frac{c}{z}\)= - 4 và x - 3y + 2z khác 0. tính \(\frac{-a+3b-2c}{x-3y+2}\)
\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=-4\)
\(\Rightarrow\frac{-a}{x}=\frac{-b}{y}=\frac{-c}{z}=4\)
\(=\frac{-a}{x}=\frac{3b}{-3y}=\frac{-2c}{2z}=\frac{-a+3b-2c}{x-3y+2z}=4\)
\frac{a}{1+b^{2}c}+\frac{b}{1+c^{2}d}+\frac{c}{1+d^{2}a}+\frac{d}{1+a^{2}b}\geq 2$
Ta có $\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}$
Áp dụng Cauchy-Schwarzt ta có
$\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}\geq \frac{(a+b+c+d)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\frac{16}{4+ab^2c+bc^2d+cd^2a+da^2b}$
Do đó ta chỉ cần chứng minh $ab^2c+bc^2d+cd^2a+da^2b\leq 4$ là suy ra $\sum \frac{a}{1+b^2c}\geq \frac{16}{4+4}=2$
Bất đẳng thức đã cho tương đương $ab.bc+bc.cd+cd.da+da.ab\leq 4$ với $a+b+c+d=4$
Chuyển $\left ( ab,bc,cd,da \right )\Rightarrow (x,y,z,t)$
Ta có $x+y+z+t=ab+bc+cd+ad \leq \frac{(a+b+c+d)^2}{4}=4$
Lại có $ab^2c+bc^2d+cd^2a+da^2b=xy+yz+zt+tx \leq \frac{(x+y+z+t)^2}{4} \leq \frac{4^2}{4}=4$
Vậy ta có đpcm
Dấu = xảy ra khi $a=b=c=d=1$
doc lam sao
\(\frac{a}{b}=\frac{c}{d}.cm:\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
Gọi\(\frac{a}{b}=\frac{c}{d}=k\)
Ta có :\(a=kb;c=kd\)
Thay vào ta có :
\(\frac{a+2c}{b+2d}=\frac{kb+2kd}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)(1)
\(\frac{a-2c}{b-2d}=\frac{kb-2kd}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\)(2)
Từ (1) và (2)
\(\Rightarrow\)Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
\(\RightarrowĐPCM\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Ta có \(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)
\(\frac{a-2c}{b-2d}=\frac{bk-2dk}{b-2d}=\frac{k\left(b-2d\right)}{b-2d}=k\)
Ta thấy : \(\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\left(=k\right)\)
Vậy \(\frac{a+2c}{b+2d}=\frac{a-2c}{b-2d}\)
con này dễ mà
Áp dụng dãy tỉ số bằng nhau
a) cho x,y,z>0 sao cho xyz=1. CMR \(\frac{x^4y}{x^2+1}+\frac{y^4z}{^{y^2+1}}+\frac{z^4x}{^{z^2+1}}\ge\frac{3}{2}\)
b) cho a,b,c,d>0 sao cho a+b+c+d=4. CMR \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2d}\ge2\)
Cho \(\frac{a+2c}{b+2d}=\frac{2a+c}{2b+d}\) .
CMR : \(\frac{a}{b}=\frac{a+c}{b+d};\frac{2a-c}{2b-d}=\frac{a-2c}{b-2d};\frac{a+2b}{a-b}=\frac{c+2d}{c-d}\)
Cho biết \(\frac{a}{b}=\frac{c}{d}\)với điều kiện b khác 0; d khác 0; c khác 3d; c khác -2d, hãy chứng minh rằng \(\frac{a-3b}{c-3d}=\frac{a+2b}{c+2d}\)
a, \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)
b, \(\frac{a^2.b^2}{c^2.d^2}=\frac{a^4+b^4-2a^2b^2}{c^4+d^4-2c^2d^2}\)
a, a/b=c/d
<=>a/c=b/d
<=>2a/2c=3b/3d=2a+3b/2c+3d=2a-3b/2c-3d
<=>2a+3b/2a-3b=2c+3d/2c-3d(đpcm)
Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng tỏ \(\frac{a}{b}=\frac{3a+2c}{3b+2d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)