Tìm a,b bs : 1+ 2a / 25 = 7-3a / 20 = 3b / 23+ 7b.
Tìm a,b biết (1+2a)/15=(7-3a)/20=3b/(23+7a)
Tìm a,b biết rằng : (1+2a)/15=(7-3a)/20=3b/(23+7a)
Tìm a, b biết rằng:
1+2a/15 = 7-3a/20 = 3b/23+7a
Tìm a,b biết rằng 1+2a/15=7-3a/20=3b/23+7a(giúp tôi với)
Tìm a,b biết rằng :
\(\frac{1+2a}{15}=\frac{7-3a}{20}=\frac{3b}{23+7a}\)
TL :
Ta có : \(\frac{1+2a}{15}=\frac{7-3a}{20}=\frac{3b}{23+7a}\)
Vì \(\frac{1+2a}{15}=\frac{7-3a}{20}\)
\(\Rightarrow20\left(1+2a\right)=15\left(7-3a\right)\)
\(\Leftrightarrow20+40a=105-45a\Leftrightarrow40a+45a=105-20\)
\(\Leftrightarrow95a=95\Rightarrow a=1\)
Thay a = 1 vào phương trình \(\frac{7-3a}{20}=\frac{3b}{23+7a}\); ta có : \(\frac{7-3.1}{20}=\frac{3b}{23+7.1}\)
\(\Leftrightarrow\frac{4}{20}=\frac{3b}{30}\Leftrightarrow\frac{1}{5}=\frac{b}{10}\Leftrightarrow5b=10\Rightarrow b=2\)
Vậy a = 1 ; b = 2
Có:
\(\frac{1+2a}{15}=\frac{7-3a}{20}\Leftrightarrow20\left(1+2a\right)=15\left(7-3a\right)\Rightarrow a=1\)
Thay a=1 vào\(\frac{1+2a}{15}=\frac{3b}{23+7a}=\frac{1}{5}=\frac{b}{10}\Rightarrow b=2\)
Cho
\(\frac{1+2a}{15}=\frac{3b}{23+7a}=\frac{7-3a}{20}\)
Tìm a và b
Từ \(\frac{1+2a}{15}=\frac{7-3a}{20}\)\(\Rightarrow20+40a=105-45a\)
\(\Rightarrow a=1\)
Lại có \(\frac{1+2a}{15}=\frac{3b}{23+7a}\Rightarrow\frac{1}{5}=\frac{3b}{30}\Rightarrow b=2\)
Đáp số a=1,b=2
bn có thể làm rõ ra hơn đc ko bn Hoàng Thị Lan Hương
Tìm a, b biết \(\frac{1+2a}{15}=\frac{3b}{23+7a}=\frac{7-3a}{20}\)
\(\frac{1+2a}{15}=\frac{7-3a}{20}\Leftrightarrow20\left(1+2a\right)=15\left(7-3a\right)\Rightarrow a=1.\)
\(\frac{1+2a}{15}=\frac{3b}{23+7a}\) Thay a = 1 vào
\(\frac{1}{5}=\frac{b}{10}\Rightarrow b=2\)
mk không bít
mk mới lớp 7 thui
sorry nha
cảm ơn nhé
k mk nha
k mk mk k lại
Bài này lp 8 mà cô giáo mk cho mk làm trong khi đó mk mới học lp 7
Tìm a,b
\(\frac{1+2a}{15}=\frac{7-3a}{20}=\frac{3b}{23+7a}\)
\(20\left(1+2a\right)=15\left(7-3a\right)\)
4(1+2a)=3(7-3a) => 8a +9a= 21-4 => 17a=17 => a=1
với a=1 ta có \(\frac{1+2a}{15}=\frac{3b}{23+7a}\)
\(\frac{1+2}{15}=\frac{3b}{23+7}\)1/5=b/10 => b=2
Vậy a= 1; b= 2
Tìm a,b biết : \(\frac{1+2a}{15}=\frac{7-3a}{20}=\frac{3b}{23+7a}\)
Ta có: \(\frac{1+2a}{15}=\frac{7-3a}{20}\Rightarrow20\left(1+2a\right)=15\left(7-3a\right)\Rightarrow20+40a=105-45a\)
\(\Rightarrow85a=85\Rightarrow a=1\)
Thay a = 1 vào \(\frac{7-3a}{20}=\frac{3b}{23+7a}\), ta được:
\(\frac{3b}{23+7}=\frac{7-3}{20}\Rightarrow\frac{3b}{30}=\frac{1}{5}\Rightarrow b=\frac{30}{3.5}=2\)
Vậy a = 1 , b = 2
\(\frac{1+2a}{15}=\frac{7-3a}{20}=\frac{3b}{23+7a}=\frac{3\left(1+2a\right)}{45}=\frac{2\left(7-3a\right)}{40}=\frac{17}{85}=\frac{1}{5}.\)
Vậy 1 + 2a = 3 => a = 1
Thay vào: \(\frac{3b}{23+7\cdot1}=\frac{1}{5}\Rightarrow\frac{3b}{30}=\frac{1}{5}\Rightarrow b=2.\)
Vậy, a = 1 và b = 2.