Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le minh huyen
Xem chi tiết
Bùi Thị Ánh
Xem chi tiết
vvvvvvvv
Xem chi tiết
kuroba kaito
18 tháng 6 2019 lúc 13:41
https://i.imgur.com/0XOEV5J.jpg
Kakarot Songoku
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 21:28

\(E=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2005\)

\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2005\ge2005\)

\(E_{min}=2005\) khi \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Thị Thuý Hường
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 5 2021 lúc 22:02

Đặt \(P=x^2+4y^2-4xy+2x-4y+9\)

\(P=\left(x-2y\right)^2+2\left(x-2y\right)+1+8\)

\(P=\left(x-2y+1\right)^2+8\ge8\)

\(P_{min}=8\) khi \(x-2y+1=0\)

Lê Thị Vâng
Xem chi tiết
Nguyễn Mạnh Tân
10 tháng 3 2019 lúc 19:54

B= \(4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+15\)

\(\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+15\ge15\)

=> GTNN của B là 15

Hà Trang
Xem chi tiết
Kẻ Vô Danh
17 tháng 6 2016 lúc 10:09

Ta có: A = 5x+ 2y+ 4xy - 2x + 4y + 2005

             = (4x2+ 4xy+y) + ( x- 2x + 1) + (y+ 4y + 2) + 2002

             = (2x+y)2 + (x-1)+ (y+2)2 +2002

Ta có: (2x+y)2>=0 V x,y. Dấu "=" XR khi 2x+y=0 <=> 2x=-y

          (x-1)2 >=0 Vx. Dấu "=" XR khi x=1

          ((y+2)>=0 V y. Dấu "=" XR khi y=-2

Vậy A>=2002 V x,y. Dấu "=" XR khi 2x=-y; x=1; y=2 <=> (x,y)=(1;2)

Do đó Min A=2002 tại (x,y)=(1,2)

Cô Hoàng Huyền
17 tháng 6 2016 lúc 10:29

Kẻ Vô Danh: Em kết luận giá trị y sai nhé.

GTNN của A  là 2002 khi  x = 1, y = - 2.

Nguyễn Hữu Bảo
Xem chi tiết
Trịnh Thành Công
23 tháng 5 2017 lúc 20:58

\(A=3x^2+5x-2\)

\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)

\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)

\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)

\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)

         Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)

                  Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)

Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)

      Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)

Kẻ Huỷ Diệt
23 tháng 5 2017 lúc 20:57

mk làm ý a thôi, mấy ý sau dựa vào mà làm.

      A = \(3x^2+5x-2\)

 => \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)

\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)

\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)

\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)

Đẳng thức xảy ra <=> x = - 5/6.

Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.

Phan Phúc Nguyên
Xem chi tiết
Đinh Thùy Linh
6 tháng 7 2016 lúc 9:27

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)

Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)