1. So sánh:
1/101^2+1/102^2+1/103^2+1/104^2+1/105^2 Với 1/(2^2*3*5^2*7)
So sánh \(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\) với \(\frac{1}{2^2×3×5^2×7}\)
an vo cai nay la vo tra loi
http://360game.vn/landing-360game/dck/webgame-tien-hiep-moi-nhat-2017-sound?utm_content=M05_DCK-m05_FC-3&utm_medium=LifeMedia&utm_source=SSP&utm_campaign=210917_CB&utm_term=DCK&from3rd=LifeMedia&sid=none&err=1
so sánh
\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\) với \(\frac{1}{2^2.3.5^2.7}\)
\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(< \frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
\(< \frac{1}{2^2.3.5^2.7}\)
CMR:1+2-3-4+5+6-7-8+...+101+102-103-104+105=1
So sánh :\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\) và \(\frac{1}{2^2.3.7.5^2}\)
1+2-3-4+5+6-7-8+9+.......+101+102-103-104+105
câu 45 nhân 11 cách giải làm sao
1-2-3+4+5-6-7+8+..+100+101-102-103+104+105
Trả lời:
=( 1-2-3+4+5-6-7+8+...+100+101-102-103+104 )+105
Từ 1 đến 104 có 104 số hạng, ta chia thành 26 nhóm, mỗi nhóm 4 số như sau:
=[( 1-2-3+4 )+( 5-6-7+8 )+...+( 97-98-99+100 )+( 101-102-103+104 )]+105
=[ 0+0+...+0+0 ]+105
= 105
Tính:
1-2-3+4+5-6-7+8+.....+101-102-103+104+105
Tổng trên có :
( 105 - 1 ) : 1 + 1 = 105 ( số hạng )
Chia 4 số làm một nhóm thì ta chia được :
105 : 4 = 26 (nhóm ) và dư 1 số
Ta có : 1-2-3+4+5-6-7+8+.....+101-102-103+104+105
= (1-2-3+4) + (5-6-7+8) + ... + (101-102-103+104) + 105
= 0 + 0 + .. + 0 + 105
= 0 + 105 = 105
Hok tốt !
So sánh
\(\frac{2^{2006}+7}{2^{2004}+7}\)và \(\frac{2^{2003}+1}{2^{2001}+1}\)
\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)và \(\frac{1}{2^2.3.5^2.7}\)
So sánh A và B biết:
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)và \(B=\frac{1}{2^2.3.5^2.7}\)
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)
\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)
Vậy \(A< B\)