M=\(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
Tìm x để M = 9/2
Cho biểu thức:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn biểu thức P
b)Tìm x để \(p< -\frac{1}{2}\)
c)Tìm x để \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
d)Tìm m để \(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
P/s : sửa đề
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(P=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(P=\frac{-3\sqrt{x}-3x}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(P=\frac{-3\sqrt{x}\left(1+\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{-3\sqrt{x}}{\sqrt{x}+3}\)
b) \(P< -\frac{1}{2}\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}+\frac{1}{2}< 0\)
\(\Leftrightarrow\frac{-6\sqrt{x}+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\frac{-5\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\)
Mà \(2\left(\sqrt{x}+3\right)>0\)
\(\Rightarrow-5\sqrt{x}+3< 0\)
\(\Leftrightarrow-5\sqrt{x}< -3\)
\(\Leftrightarrow\sqrt{x}>\frac{3}{5}\)
\(\Leftrightarrow x>\frac{9}{25}\)
Vấy .................
c) \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
\(\Leftrightarrow-3\sqrt{x}+2\sqrt{x}-2-2+x=0\)
\(\Leftrightarrow-\sqrt{x}-4+x=0\)
\(\Leftrightarrow-\sqrt{x}\left(1-\sqrt{x}\right)=4\)
Còn lại lập bảng tự tìm giá trị của x là ra .( Chú ý : đối chiếu ĐKXĐ )
d)
\(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
\(\Leftrightarrow\frac{-3\sqrt{x}}{\sqrt{x}+3}\left(\sqrt{x}+3\right)+x\sqrt{x}-xm=x-3\sqrt{x}-m\sqrt{x}\)
\(\Leftrightarrow-3\sqrt{x}+x\sqrt{x}-xm-x+3\sqrt{x}+m\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(x+m\right)-x\left(m+1\right)=0\)
\(\Leftrightarrow\sqrt{x}\left[x+m-m\sqrt{x}-\sqrt{x}\right]=0\)
\(\Leftrightarrow\sqrt{x}\left[m\left(1-\sqrt{x}\right)-\sqrt{x}\left(1-\sqrt{x}\right)\right]=0\)
\(\Leftrightarrow\sqrt{x}=0;m-\sqrt{x}=0;1-\sqrt{x}=0\)
+) \(\sqrt{x}=0\Leftrightarrow x=0\left(TM\right)\)
+) \(1-\sqrt{x}=0\)
\(\Leftrightarrow x=1\left(TM\right)\)
+) \(m-\sqrt{x}=0\)
\(\Leftrightarrow\orbr{\begin{cases}m-\sqrt{0}=0\\m-\sqrt{1}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}}\)
Vậy ..................
\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a, Rút gọn
b, Tìm x để P=-1
c, tìm m để với mọi giá trị x>9 Ta có \(m\left(\sqrt{x}-3\right)P>x+1\)
Cho: \(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8-x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a. Rút gọn
b. Với x > 9. Tìm m để \(m\left(\sqrt{x}-3\right).P>x+1\)
Cho biểu thức \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn P
b)Tìm x để \(P< \frac{1}{2}\)
c)Tìm x để \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
d)Tìm m để \(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
Cho biểu thức:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn biểu thức P
b)Tìm x để \(p< -\frac{1}{2}\)
c)Tìm x để \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
d)Tìm m để \(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
tìm giá trị của x để M>-6:M=\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
ĐKXĐ: x > 0; x \(\ne\)1
M = \(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
M = \(\frac{\sqrt{x}.\sqrt{x}-1}{2\sqrt{x}}\cdot\frac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
M = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}}\cdot\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
M = \(\frac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)
M > -6 => \(-2\sqrt{x}+6>0\)
<=> \(-2\left(\sqrt{x}-3\right)>0\) <=> \(\sqrt{x}-3< 0\) <=> \(x< 9\)
kết hợp với đk => 0 < x < 9 và x khác 1
Cho \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{2\sqrt{x}+7}{x-4}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+1\right)\)
Tìm m để P = M
P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}-\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tính x để P=-1
c) Tìm m để với mọi giá trị x>9 ta có m(\(\sqrt{x}\)- 3)P > x+1
M=\(\frac{\left(\sqrt{X}+1\right)^2}{\sqrt{X}}\)
Tìm x để M =9/2
ĐKXĐ: x > 0
Ta có: \(M=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\Leftrightarrow\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}=\frac{9}{2}\Rightarrow\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{9}{2}\)
\(\Rightarrow2\left(x+2\sqrt{x}+1\right)=9\sqrt{x}\)
\(\Rightarrow2x-5\sqrt{x}+2=0\)
\(\Rightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\left(n\right)\\x=\frac{1}{4}\left(n\right)\end{cases}}}\)
Vậy x = {1/4 ; 4}