tìm các số x, y, z biết rằng:
x/2=y/3=z/4 và x.y.z=648
Tìm 3 số x,y,z biết rằng:x/2=y/3;y/4=z/5 và z+y-z=10
cách giải chi tiết nè bạn j đó ơi
ta có: x/2=y/3;y/4=z/5 và x+y-z=10
x/2=y/3=>x/8=y/12 1
y/4=z/5=>y/12=z/15 2
Từ 1, 2=> x/8=y/12=z/15
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
Ta có:
x/8=2=>x=2.8=16
y/12=2=.=>y=2.12=24
z/15=2=>z=2.15=30
Vậy x=16;y=24;z=30
(Bài này mình chắc đúng luôn)
Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vax+y-z=10\)0
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left[1\right]\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left[2\right]\)
\(Tu1va2\Rightarrow:\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30.Vayx=16;y=24;z=30\)
tìm các số x,y,z biết; x\2=y\3=z\5 và x.y.z=3000
tìm các số x,y,z biết; x\2=y\3=z\5 và x.y.z=810
đặt x\2=y\3=z\5=k
=>x=2k
y=3k
z=5k
thay x=2k;y=3k;z=5k vào x.y.z=810 ta được:
2k.3k.5k=810
30k3=810
k3=27
k3=33
=>k=3
=>x=2.3=6
y=3.3=9
z=5.3=15
tìm 3 số x,y,z biết :
3 : x-1= 4:y-2 =5:z-3 và x.y.z=192
tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5:y(x+y+z)=9;z(x+y+z)=5.
mình sẽ đơn giản cách giải ấy cho cậu
cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5
(x + y + z)2 = 9
chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2
vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3
với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)
tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)
Và trường hợp còn lại (x + y + z) = -3 cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được
x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)
vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình
\(\hept{\begin{cases}x\left(x+y+z\right)=-5\left(1\right)\\y\left(x+y+z\right)=9\left(2\right)\\z\left(x+y+z\right)=5\left(3\right)\end{cases}}\)
Cộng theo vế của (1), (2) và (3) ta đc:
\(\left(x+y+z\right)^2=9=\left(-3\right)^2\)hoặc\(3^2\)
\(\Rightarrow x+y+z=-3\)hoặc\(3\)
Xét \(x+y+z=3\)lần lượt thay vào (1), (2), (3) ta có:
\(\hept{\begin{cases}x=-\frac{5}{3}\\y=3\\z=\frac{5}{3}\end{cases}}\)
Xét \(x+y+z=-3\)cũng thay vào (1),(2),(3) đc:
\(\hept{\begin{cases}x=\frac{5}{3}\\y=-3\\z=-\frac{5}{3}\end{cases}}\)
Vậy....
tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5
tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5
Phan Đăng Nguyên bn lần lượt cộng 2 vế lại với nhau ta được (x+y+z)(x+y+z)=-5+9+5 (x+y+z)2 = 9
9=32 hoặc 9=(-3)2
Vậy có 2 trường hợp hoặc (x+y+z)=-5=>x = \(\frac{5}{3}\)
Tương tự, thay vào (x+y+z)=3 vào 2 biểu thức còn lại ta sẽ đc y=3, z=\(\frac{5}{3}\)
Trường hợp còn lại (x+y+z)=-3 thay lần lượt vào 3 biểu thứ trên, ta sẽ suy ra đc \(x=\frac{5}{3};y=-3;z=\frac{-5}{3}\)
Vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\)
tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5
tìm x,y,z biết a,3/x-1=4/y-2=5/z-3 và x+y+z=18 b,3/x-1=4/y-2=5/z-3 và x.y.z=192
Tìm x,y,z biết x.2=y.3=z.4 và x.y.z=180
Theo đề được:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\) và x.y.z=180
=> \(\left(\frac{x}{\frac{1}{2}}\right)^3=\left(\frac{y}{\frac{1}{3}}\right)^3=\left(\frac{z}{\frac{1}{4}}\right)^3=\frac{x.y.z}{\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}=\frac{180}{\frac{1}{24}}=4320\)
Vậy \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\sqrt[3]{4320}\)
=> Không tìm được x,y,z