Tính giá trị biểu thức \(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
Tính giá trị của biểu thức: \(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(B=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(B=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)
Vậy giá trị của biểu thức \(B=\frac{32}{99}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.....+\frac{4}{95.99}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Ta Có
(1/3-1/7+1/7-1/11+1/11-1/15+...+1/95-1/99)
(1/3-1/99)
32/99
TISNG BIỂU THỨC
A= 4/3.7+4/7.11+4/11.15+...................................................+4/95.99
A = \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
A = \(\frac{1}{3}-\frac{1}{99}\)
A = \(\frac{32}{99}\)
tính tổng sau : \(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
4x(\(\frac{1}{3.7}+...+\frac{1}{107.111}\) )
4(\(\frac{1}{3}-\frac{1}{7}+...+\frac{1}{107}-\frac{1}{111}\))
4(\(\frac{1}{3}-\frac{1}{111}\))
4.\(\frac{12}{37}\)
48/37
Hãy tính 1 cách hợp lí:
\(\frac{1}{3.7}+\)\(\frac{1}{7.11}+\frac{1}{11.15}+......+\frac{1}{95.99}\)
A=1/3*7+1/7*11+..+1/95*99
=> 4A=4/3*7+4/7*11+..+4/95*99
=>4A=1/3-1/7+1/7-1/11+...+1/95-1/99=1/3-1/99=32/99
=>A=8/99
\(=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+.......+\frac{4}{95.99}\right)=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{1}{4}.\frac{32}{99}=\frac{8}{99}\)
\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{95.99}\)
\(=\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\right)\)
\(=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{1}{4}\cdot\frac{32}{99}=\frac{8}{99}\)
Tính nhanh
A=\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{1}{107.111}\)
Ta có A = \(\frac{4}{3.7}+\frac{4}{7.11}+..............+\frac{4}{107.111}\)
=> A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.............+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}=\frac{12}{37}\)
k nha bạn
tính tổng \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)
Ta thấy \(\frac{1}{3}-\frac{1}{7}=\frac{7-3}{3.7}=\frac{4}{3.7}\)
\(\frac{1}{7}-\frac{1}{11}=\frac{11-7}{7.11}=\frac{4}{7.11}\)
..........................
\(\frac{1}{1023}-\frac{1}{1027}=\frac{1027-1023}{1023.1027}=\frac{4}{1023.1027}\)
=> \(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{1023.1027}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{1023}-\frac{1}{1027}\)
=> =\(\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3.1027}\)
Ta có: \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{1023}-\frac{1}{1027}\)
\(=\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3081}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{1023.1027}\)
\(=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{1023.1027}\)
\(=\frac{1}{3}-\frac{1}{1027}\)
\(=\frac{1024}{3081}\)
ai k mik mik k lại nha
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{107.111}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(\Rightarrow=\frac{1}{3}-\frac{1}{111}\)
\(=\frac{12}{37}\)
k nha
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(=\frac{1}{3}-\frac{1}{111}\)
\(=\frac{108}{333}=\frac{12}{37}\)
ten gia mao nobita
nobi k the gioi nhu the
do gia :v
\(A=\frac{4^2}{3.7}+\frac{4^2}{7.11}+\frac{4^2}{11.15}+...+\frac{4^2}{107.111}\)
\(A=\frac{4^2}{3.7}+\frac{4^2}{7.11}+\frac{4^2}{11.15}+...+\frac{4^2}{107.111}\)
\(A=\) \(4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{107.111}\right)\)
\(A=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)
\(A=4\left(\frac{1}{3}-\frac{1}{111}\right)\)
\(A=4.\frac{12}{37}\)
\(A=\frac{48}{37}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}+0+0+0+0\)
\(=\frac{8}{27}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{7-3}{3.7}+\frac{11-7}{7.11}+.....+\frac{27-23}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}=\frac{8}{27}\)