Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mai Anh
Xem chi tiết
kaitovskudo
18 tháng 8 2016 lúc 20:42

A=\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.....\frac{2016^2-1}{2016^2}\)

A=\(\frac{\left(2+1\right)\left(2-1\right)}{2^2}.\frac{\left(3+1\right)\left(3-1\right)}{3^2}......\frac{\left(2016+1\right)\left(2016-1\right)}{2016^2}\)

A=\(\frac{3.4......2017}{2.3....2016}.\frac{1.2...2015}{2.3...2016}\)

A=\(\frac{2017}{2}.\frac{1}{2016}\)

A=\(\frac{2017}{2.2106}>\frac{1}{2}\)

Vậy A\(>\frac{1}{2}\)

tạ quang vũ
Xem chi tiết
Như LuPin
10 tháng 5 2016 lúc 9:34

A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)

A=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\right)\)

A=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2015.2016}\right)\)

A=\(\frac{1}{4}-\frac{1}{2015.2016.2}\)\(\Rightarrow A<\frac{1}{4}\)

An Lê
Xem chi tiết
Bùi Thế Hào
9 tháng 5 2017 lúc 12:57

2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016

Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016

=> 2A=1/1.2-1/2015.2016

=> 2A < 1/2 => A < 1/4

nguyễn minh tú
31 tháng 8 2017 lúc 12:12

nbvbvvvxcvcgf

phạm trần minh anh
Xem chi tiết
Shinichi_kun
Xem chi tiết
Do Kyung Soo
16 tháng 1 2016 lúc 22:21

A<1

bn tick mk nha cho mk thoat am ngay de con an mung

Shinichi_kun
16 tháng 1 2016 lúc 22:22

các bạn giải chi tiết hộ mik

Linh
16 tháng 1 2016 lúc 22:42

A < 1

tvt
Xem chi tiết
Nguyễn Hải Văn
Xem chi tiết
Cô Hoàng Huyền
8 tháng 12 2017 lúc 9:45

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)

Ta thấy \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}=1+A-\frac{1}{2^{2016}}\)

\(\Rightarrow A=1-\frac{1}{2^{2016}}< 1\)

Vậy A < 1.

yasuo
Xem chi tiết
Navy Đỗ
Xem chi tiết
Phùng Minh Quân
23 tháng 4 2018 lúc 19:35

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

Huỳnh Phước Mạnh
23 tháng 4 2018 lúc 19:40

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)