Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huy Bảo
Xem chi tiết
fan FA
18 tháng 8 2016 lúc 11:29

TH1: Đặt:  a=3k              (K \(\in\)Z)

=> A= (3k+11)(3k+1998)+(3k+2015)

=> A= 3k+1998)(3k+11)(3k+2015)

=> A= 3(k+666)(3k+11)(3k+2015)

A=  3(k+666)(3k+11)(3k+2015) chia hết cho 3 (vì 3 chia hết cho 3) (đpcm)

TH2: a=3k+1

=> A= (3k+1+11)(3k+1+1998)(3k+1+2015)

=> A= (3k+12)(3k+1999)(3k+2016)

=> A= 3(k+4)(3k+1999)(3k+2016)

A= 3(k+4)(3k+1999)(3k+2016) chia hết cho 3 (vì 3 chia hết cho 3)

TH3: a=3k+2

=> A= (3k+2+11)(3k+2+1998)(3k+2+2015)

=> A= (3k+13)(3k+2000)(3k+2017) không bao giờ chia hết cho 3

=> TH3 a=3k+2 là vô lí

Vậy với 2 TH luôn được A chia hết cho 3

Ko Biết
Xem chi tiết
Lê Nguyên Hạo
18 tháng 8 2016 lúc 10:43

tui biết có 2 TH à

Thiên Võ Minh
Xem chi tiết
HT2k02
8 tháng 4 2021 lúc 22:59

Mình thấy đề này bị sai nhé bạn . 
Trong ngoặc khi quy đồng rút gọn thì ở mẫu vẫn sẽ có nhân tử 97 là số nguyên tố,  Mà 2014^2015 không chia hết cho 97 

=> A không là số nguyên

Mình sửa đề thành :

\(A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{98}\right)\cdot98!\\ =2\cdot3\cdot...\cdot98+1\cdot3\cdot...\cdot98+...+1\cdot2\cdot...\cdot96\cdot98+1\cdot2\cdot...\cdot97\\ =\left(2\cdot3\cdot...\cdot98+1\cdot2\cdot...\cdot97\right)+\left(1\cdot3\cdot...\cdot98+1\cdot2\cdot...96\cdot98\right)+...\\ =2\cdot3\cdot...\cdot97\cdot\left(1+98\right)+1\cdot3\cdot4\cdot...\cdot96\cdot98\cdot\left(2+97\right)+...=99\left(2\cdot3\cdot...\cdot97+1\cdot3\cdot4...\cdot96\cdot98\right).chia.het.cho.11\)

Nguyễn Phương Hiền Thảo
Xem chi tiết
Minh Ngoc
Xem chi tiết
Nguyễn Ngọc Bảo Trân
7 tháng 11 2015 lúc 20:20

Câu a và câu b bài 2 xem Câu hỏi tương tự 
Bài 2 câu c : 
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 ) 
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0 
=> Số tận cùng của A = 0. 
Bài 1 để nghiên cứu

le_meo
Xem chi tiết
gtrutykyu
Xem chi tiết
nguyen thanh nhan
Xem chi tiết
Ngọc Huyền
Xem chi tiết