Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Châu Thị Yến Nhi
Xem chi tiết
i love Vietnam
15 tháng 11 2021 lúc 7:47

2) Tích của ba số nguyên âm và một số nguyên dương.

4) Tích của một số nguyên âm và hai số nguyên dương

Chọn 2) và 4)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 5 2018 lúc 17:56

Nguyễn Thị Hồng Linh
Xem chi tiết
Hoàng Long
24 tháng 6 2019 lúc 9:32

#) Giải

Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0) 
=> z(x + y) = xy 
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1 
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1 
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1 
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1 
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1 
Vậy không tồn tại x, y, z thỏa đk bài toán 

~ Hok tốt ~

kham khảo ở đây nha

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này 

hc tốt ~:B~

Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0) 
=> z(x + y) = xy 
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1 
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1 
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1 
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1 
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1 
Vậy không tồn tại x, y, z thỏa đk bài toán hay x+y không phải số chính phương

nguồn : Câu hỏi của Quân Đặng - Toán lớp 7 - Học toán với OnlineMath

One piece
Xem chi tiết
KAl(SO4)2·12H2O
17 tháng 1 2018 lúc 17:14

Ta có nhận xét rằng: Tích của ba số nguyên bất kỳ là một số dương thì trong đó phải tồn tại một số dương.
Do tích của 3 số nguyên bất kỳ trong 25 số đều là số dương nên ta lấy nhóm 3 số bất kỳ và lấy số dương trong đó ra. 
Vậy còn lại 24 số.
Ta chia 24 số này thành 8 nhóm, mỗi nhóm có 3 số.
Vì tích của 3 số nguyên bất kì trong 24 số đó đều dương nên mỗi nhóm, ta đều lấy ra được số một dương.
Vậy thì ta được 8 số dương. Vậy còn lại 24 - 8 = 16 số.
Ta lại lấy một nhóm 3 số bất kỳ, lấy số dương trong đó. Vậy còn lại 16 - 1 = 15 số.
Lại chia 15 số thành 5 nhóm, mỗi nhóm 3 số. Tiếp tục lấy đi 1 số dương trong mỗi nhóm, ta được 5 số.
Ta còn 15 - 5 = 10 số.
Ta lại lấy một nhóm 3 số bất kỳ, lấy số dương trong đó. Vậy còn lại 10 - 1 = 9 số.
Lại chia 9 số thành 3 nhóm 3 số. Tiếp tục lấy đi 3 số dương trong 3 nhóm.
Ta còn 9 - 3 = 6 số.
Ta chia 6 số thành 2 nhóm, tiếp tục lấy đi 2 số dương, ta còn 4 số.
Lấy nhóm 3 số bất kì, chọn được số dương trong đó.
Vậy còn 3 số.
Trong 3 số này lấy một số dương. Vậy chỉ còn 2 số. 
Tích hai số này là số dương nên hoặc chúng cùng âm, cùng dương.
Nếu chúng cùng âm, ta lấy 2 số dương bất kì vừa chọn được trong 23 số kia nhân với một trong hai số đã cho thì được tích âm.
Vậy vô lý.
Từ đó suy ra hai số còn lại cùng dương.
Nói cách khác cả 25 số đều là số dương.

:D

Cô Hoàng Huyền
8 tháng 1 2018 lúc 16:27

Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo lời giải bài tương tự tại đây nhé.

Thắng  Hoàng
17 tháng 1 2018 lúc 17:13

Ta có:A= (n-1)n(n+1) chia hết cho 504
Ta có: 504=32.7.832.7.8 ; Đặt n=a3a3, cần chứng minh
A=(a3−1)a3(a3+1)(a3−1)a3(a3+1) chia hết cho 504
*Nếu a chẵn thì a3a3 chia hết cho 8; nếu a lẻ thì a3−1a3−1 và a3+1a3+1 là 2 số chẵn liên tiếp nên (a3−1)(a3+1)(a3−1)(a3+1) chia hết cho 8 \Rightarrow mọi trường hợp A đều chia hết cho 8
* Nếu a chia hết cho 7 thì A chia hết cho 7. Nếu a ko chia hết cho 7 thì (a3−1)(a3+1)(a3−1)(a3+1)= a6−1a6−1 chia hết cho 7
*Nếu a chia hết cho 3 thì a^3 chia hết cho 9. Nếu a= 3k+1 hoặc a=3k-1 thì a3a3 = 27k3+27k2+9k+127k3+27k2+9k+1 hoặc a3=27k3−27k2+9k−1a3=27k3−27k2+9k−1, nên a3+1a3+1hoặc a3−1a3−1 sẽ có 1 số chia hết cho 9
\Rightarrow A chia hết cho 7,8,9
\Rightarrow A chia hết cho 504

Ngô Gia Bảo
Xem chi tiết
kajsbsbn123
Xem chi tiết
Trà My Phạm
Xem chi tiết
Hoàng Minh Phong
Xem chi tiết
nguyễn thanh chúc
Xem chi tiết
Duong Trang
31 tháng 1 2017 lúc 8:26

Ta thấy : Trong 31 số đó có ít nhất 1 số nguyên dương. Ta tách 1 số đó ra thì còn 30 số chia đều vào 6 nhóm , mỗi nhóm có 5 số.

            Mà tổng 5 số bất kì nào cũng là một số nguyên dương cộng thêm 1 số nguyên dương đã tách ta được 1 số nguyên dương.

  Vậy tổng của 31 số đó là một số nguyên dương
 

Thanh Dii
Xem chi tiết