Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Dương
Xem chi tiết
Giang
10 tháng 8 2017 lúc 16:55

Sửa đề:

Cho tam giác ABC cân tại A, đường cao BH. Chứng minh

rằng \(\widehat{BAC}=\widehat{CBH}\).

Bạn xem lại đề nhé!

katherina
10 tháng 8 2017 lúc 17:00

A B C H

Ta có : \(\widehat{BAC}=180^0-2\widehat{ACB}\) (vì góc ABC = góc ACB do tam giác ABC cân tại A)

Do đó: \(\widehat{BAC}=2\left(90^0-\widehat{ACB}\right)=2\widehat{CBH}\) (đpcm)

Nguyễn Viết Hải
Xem chi tiết
Vũ Thu Trang
Xem chi tiết
Trương Huy Hoàng
21 tháng 1 2022 lúc 23:10

C3: Hệ bpt trở thành: \(\left\{{}\begin{matrix}x\ge1-m\\mx\ge2-m\end{matrix}\right.\)

a, Để hệ phương trình vô nghiệm thì \(m=0\)

b, Để hệ có nghiệm duy nhất thì \(\left\{{}\begin{matrix}m\ne0\\\dfrac{m-2}{m}=1-m\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m=\pm\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow\) \(m=\pm\sqrt{2}\)

c, \(x\in\left[-1;2\right]\) \(\Leftrightarrow\) \(-1\le x\le2\)

Để mọi \(x\in\left[-1;2\right]\) là nghiệm của hệ bpt trên thì

\(\left\{{}\begin{matrix}-1\le1-m\le2\\-1\le\dfrac{2-m}{m}\le2\end{matrix}\right.\) với \(m\ne0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2\ge m\ge-1\\m\ge\dfrac{2}{3}\end{matrix}\right.\) \(\left(m\ne0\right)\)

\(\Leftrightarrow\) \(2\ge m\ge\dfrac{2}{3}\)

Vậy \(m\in\left[\dfrac{2}{3};2\right]\) thì mọi \(x\in\left[-1;2\right]\) là nghiệm của hệ bpt

Chúc bn học tốt!

Kiến Văn
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2023 lúc 15:02

27.

Bán kính mặt cầu ngoại tiếp tứ diện vuông được tính bằng:

\(R=\sqrt{\dfrac{OA^2+OB^2+OC^2}{4}}=\sqrt{\dfrac{1^2+2^2+3^2}{4}}=\dfrac{\sqrt{14}}{2}\)

28.

Từ giả thiết suy ra \(A\left(2;2;2\right)\)

Gọi điểm thuộc mặt Oxz có tọa độ dạng \(D\left(x;0;z\right)\)

\(\Rightarrow\overrightarrow{AD}=\left(x-2;-2;z-2\right)\)

\(\overrightarrow{BD}=\left(x+2;-2;z\right)\) ; \(\overrightarrow{CD}=\left(x-4;-1;z+1\right)\)

D cách đều A, B, C \(\Rightarrow\left\{{}\begin{matrix}AD=BD\\AD=CD\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2+4+\left(z-2\right)^2=\left(x+2\right)^2+4+z^2\\\left(x-2\right)^2+4+\left(z-2\right)^2=\left(x-4\right)^2+1+\left(z+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+z=1\\2x-3z=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)

\(\Rightarrow P\left(\dfrac{3}{4};0;-\dfrac{1}{2}\right)\)

Nguyễn Việt Lâm
1 tháng 3 2023 lúc 15:06

29.

Do tâm I mặt cầu thuộc Oz nên tọa độ có dạng: \(I\left(0;0;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\left(-3;1;z-2\right)\\\overrightarrow{BI}=\left(-1;-1;z+2\right)\end{matrix}\right.\)

Mặt cầu qua A, B nên \(AI=BI\)

\(\Leftrightarrow3^2+1^2+\left(z-2\right)^2=1^2+1^2+\left(z+2\right)^2\)

\(\Leftrightarrow8z=8\Rightarrow z=1\)

\(\Rightarrow I\left(0;0;1\right)\Rightarrow R=IB=\sqrt{1^2+1^1+3^2}=\sqrt{11}\)

Phương trình mặt cầu:

\(x^2+y^2+\left(z-1\right)^2=11\)

Nguyễn Việt Lâm
1 tháng 3 2023 lúc 15:18

30.

Từ phương trình mặt cầu ta có:

\(R=\sqrt{1^2+\left(-2\right)^2+2^2-\left(-m\right)}=\sqrt{m+9}\)

\(\Rightarrow\sqrt{m+9}=5\Rightarrow m=16\)

31.

Khoảng cách giữa điểm M và điểm đối xứng với nó qua Ox là \(2\sqrt{y_M^2+z_M^2}=2\sqrt{65}\)

32.

Gọi \(I\left(x;y;z\right)\) là tâm mặt cầu

\(\overrightarrow{AI}=\left(x-1;y;z\right)\) ; \(\overrightarrow{BI}=\left(x;y-1;z\right)\) ; \(\overrightarrow{CI}=\left(x;y;z+1\right)\)\(\overrightarrow{DI}=\left(x-1;y;z-3\right)\)

Do I là tâm mặt cầu

\(\Rightarrow\left\{{}\begin{matrix}AI=BI\\AI=CI\\AI=DI\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+y^2+z^2=x^2+\left(y-1\right)^2+z^2\\\left(x-1\right)^2+y^2+z^2=x^2+y^2+\left(z-1\right)^2\\\left(x-1\right)^2+y^2+z^2=\left(x-1\right)^2+y^2+\left(z-3\right)^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-x+y=0\\-x+z=0\\-6z+9=0\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{3}{2}\)

Hay \(I\left(\dfrac{3}{2};\dfrac{3}{2};\dfrac{3}{2}\right)\) \(\Rightarrow D\) đúng

nguyễn thị khánh nhi
Xem chi tiết
nguyễn thị khánh nhi
15 tháng 12 2022 lúc 20:12

mọi người ơi giúp em với ạ       SOS!!!

 

trâm nguyễn
20 tháng 12 2022 lúc 19:47

loading...

Quynh An
Xem chi tiết
vũ việt anh
31 tháng 3 2020 lúc 17:14

là chống lũ lụt ,điều hòa khí hậu,...

CHÚC HỌC TỐT

Khách vãng lai đã xóa
Vũ Thu Trang
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 1 2022 lúc 14:47

Phương trình hoành độ giao điểm (d) và (P):

\(x^2-2x-3=ax-a-3\)

\(\Leftrightarrow x^2-\left(a+2\right)x+a=0\) 

\(\Delta=\left(a+2\right)^2-4a=a^2+4>0;\forall a\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=a+2\\x_Ax_B=a\end{matrix}\right.\)

Mặt khác do A, B thuộc (d) nên: \(\left\{{}\begin{matrix}y_A=ax_A-a-3\\y_B=ax_B-a-3\end{matrix}\right.\)

\(y_A+y_B=0\)

\(\Leftrightarrow a\left(x_A+x_B\right)-2a-6=0\)

\(\Leftrightarrow a\left(a+2\right)-2a-6=0\)

\(\Leftrightarrow a^2-6=0\)

\(\Leftrightarrow a=\pm\sqrt{6}\)

Huong Tran
Xem chi tiết
Cầm Đức Anh
17 tháng 9 2017 lúc 16:49

Công cụ kim khí đã mở ra một thời đại mới mà tác dụng và năng suất lao động của nó vượt xa thời đại đồ đá. Đặc biệt là công cụ bằng sắt thì không có một công cụ đá nào có thể so sánh được. Nhờ có đồ kim khí, nhất là sắt, người ta có thế khai phá những vùng đất đai mà trước kia chưa khai phá nổi, có thể cày sâu cuốc bẫm, có thể xẻ gỗ đón" thuyền đi biển, xẻ đá làm lâu đài và bản thân việc đúc sắt cũng là một ngành sản xuất quan trọng bậc nhất.

Đây thực sự là một cuộc cách mạng trong sản xuất. Lần đầu tiên trên chặng đường dài của lịch sử loài người, con người có thể làm ra một lượng sản phẩm thừa.


hihi

Vũ Thu Trang
Xem chi tiết
Thanh Hoàng Thanh
22 tháng 1 2022 lúc 17:48

\(\dfrac{x-3}{3x-5}< \dfrac{3x-5}{x-3}.\left(x\ne3;x\ne\dfrac{5}{3}\right).\)

\(\Leftrightarrow\dfrac{x-3}{3x-5}-\dfrac{3x-5}{x-3}< 0.\Leftrightarrow\dfrac{\left(x-3\right)^2-\left(3x-5\right)^2}{\left(3x-5\right)\left(x-3\right)}< 0.\)

\(\Leftrightarrow\dfrac{x^2-6x+9-\left(9x^2-30x+25\right)}{\left(3x-5\right)\left(x-3\right)}< 0.\) \(\Leftrightarrow\dfrac{x^2-6x+9-9x^2+30x-25}{\left(3x-5\right)\left(x-3\right)}< 0.\)

\(\Leftrightarrow\dfrac{-8x^2+24x-16}{\left(3x-5\right)\left(x-3\right)}< 0.\Leftrightarrow\dfrac{8x^2-24x+16}{\left(3x-5\right)\left(x-3\right)}>0.\)

\(\Leftrightarrow\dfrac{8\left(x^2-3x+2\right)}{\left(3x-5\right)\left(x-3\right)}>0.\Leftrightarrow\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}>0.\)

Đặt \(\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}=f\left(x\right).\)

Lập bảng xét dấu:

x\(-\infty\)              1                   \(\dfrac{5}{3}\)                      2                       3                       \(+\infty\)
x - 2          -           |       -           |         -             0           +            |            +
x - 1         -            0       +         |        +              |          +             |             +
3x - 5            -         |          -        0         +            |          +             |             +
x - 3             -        |           -       |          -             |           -             0            +
f (x)           +         0          -      ||          +            0           -             ||            +

Vậy \(\dfrac{\left(x-2\right)\left(x-1\right)}{\left(3x-5\right)\left(x-3\right)}=f\left(x\right)>0.\) \(\Leftrightarrow x\in\left(-\infty;1\right)\cup\left(\dfrac{5}{3};2\right)\cup\left(3;+\infty\right).\)

 

Bùi Đức Huy Hoàng
22 tháng 1 2022 lúc 17:41
Bùi Đức Huy Hoàng
22 tháng 1 2022 lúc 18:15

a)

      \(\left\{{}\begin{matrix}2x^2+7x-4\ge x^2-4\\\dfrac{2x-1}{x^2+x-2}< \dfrac{2x-5}{x^2+x-2}\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x^2+7\ge0\\\dfrac{2x-5-2x+1}{x^2+x-2}>0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x\left(x+7\right)\ge0\\\dfrac{-4}{x^2+x-2}>0\end{matrix}\right.\)

 => \(\left\{{}\begin{matrix}x\left(x+7\right)\ge0\\\left(x-1\right)\left(x+2\right)< 0\end{matrix}\right.\)

ta có x+2>x-1

=>x-1<0 và x+2 >0 để thỏa điều kiện =>x<1 và x>-2(hay -2<x<1)(1)

vì -2<x<1 nên x+7>0

=>x\(\ge\)0 để thỏa điều kiện(2)
từ (1) và (2) =>0\(\le\)x<1 
b)

      \(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\4x-3< 2\left(x+3\right)\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\2x-9< 0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left(x-3\right)\left(\sqrt{2}-x\right)>0\\x< \dfrac{9}{2}\end{matrix}\right.\)

có 2 TH xảy ra để thỏa điều kiện

TH1 (x-3)<0 và (\(\sqrt{2}\)-x)<0=>\(\sqrt{2}\)<x<3(nhận)

TH2 (x-3)>0 và (\(\sqrt{2}\)-x)>0=>3<x<\(\sqrt{2}\)(loại)

em nghĩ như nào làm như v thôi có gì sai chị xem và sửa hộ em nhá bucminh