giải phương trình \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
Giải phương trình : \(\frac{X+\sqrt{3}}{\sqrt{X}+\sqrt{X+\sqrt{3}}}+\frac{X-\sqrt{3}}{\sqrt{X}-\sqrt{X-\sqrt{3}}}=\sqrt{X}\)
a) Giải phương trình trên tập số thực:
\(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
b) Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x^2+2x\sqrt{xy}=y^2\sqrt{y}\\\left(4x^3+y^3+3x^2\sqrt{x}\right)\left(15\sqrt{x}+y\right)=3\sqrt{x}\left(y\sqrt{y}+x\sqrt{y}+4x\sqrt{x}\right)^2\end{matrix}\right.\) ; với \(x,y\inℝ\)
a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)
Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)
Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)
\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)
\(\Leftrightarrow b=a\)
Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)
\(\Leftrightarrow x^3-4x^2-6x+5=0\)
\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)
Giải các phương trình sau :
1/\(\sqrt{x+2+4\sqrt{x-2}}=5\)
2/\(\sqrt{x+3+4\sqrt{x-1}}=2\)
3/\(\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\)
4/\(\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\)
\(1,\sqrt{x+2+4\sqrt{x-2}}=5\left(x\ge2\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-2}+4\right)^2}=5\\ \Leftrightarrow\sqrt{x-2}+4=5\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\Leftrightarrow x=3\\ 2,\sqrt{x+3+4\sqrt{x-1}}=2\left(x\ge1\right)\\ \Leftrightarrow\sqrt{\left(\sqrt{x-1}+4\right)^2}=2\\ \Leftrightarrow\sqrt{x-1}+4=2\\ \Leftrightarrow\sqrt{x-1}=-2\\ \Leftrightarrow x\in\varnothing\left(\sqrt{x-1}\ge0\right)\)
\(3,\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\left(x\ge\dfrac{1}{2};x\ne1\right)\\ \Leftrightarrow x+\sqrt{2x-1}=2\\ \Leftrightarrow x-2=-\sqrt{2x-1}\\ \Leftrightarrow x^2-4x+4=2x-1\\ \Leftrightarrow x^2-6x+5=0\\ \Leftrightarrow\left(x-5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=1\left(loại\right)\end{matrix}\right.\)
\(4,\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\left(x\ge\dfrac{5}{2}\right)\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}=6\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}=6\\ \Leftrightarrow\sqrt{2x-5}+1=6\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(TM\right)\)
Giải phương trình: \(x=\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{2-x}\sqrt{5-x}\)
Giải phương trình: \(x=\sqrt{x-2}.\sqrt{x-3}+\sqrt{x-3}.\sqrt{x-6}+\sqrt{x-6}.\sqrt{x-2}\)
Giải phương trình \(\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x-\sqrt{x^2-\sqrt{3}}}=x\)
giải phương trình: \(\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x-\sqrt{x^2+\sqrt{3}}}=x\)
Gọi S có n số hạng sao cho S = 1+ 2+ 3 + ...+ n = aaa ( a là chữ số)
=> (n + 1).n : 2 = a.111
=> n(n + 1) = a.222
=> n(n + 1) = a.2.3.37
a là chữ số mà n; n + 1 là hai số tự nhiên liên tiếp nên a = 6
=> n(n + 1) = 36.37
=> n = 36
Vậy cần 36 số hạng
cho mình nha
chả liên quan gì cả sao gửi vô đây vậy bạn
Giải phương trình
\(x=\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}\)
điệu kiện \(\hept{\begin{cases}x\ge0\\2-x\ge0;3-x\ge0;5-x\ge0\end{cases}< =>0\le x\le2;}\)
ta có 2x = \(2\sqrt{2-x}\sqrt{3-x}+2\sqrt{3-x}\sqrt{5-x}+2\sqrt{5-x}\sqrt{2-x}\)
<=> 2x = \(\sqrt{2-x}\left(\sqrt{3-x}+\sqrt{5-x}\right)+\sqrt{3-x}\left(\sqrt{5-x}+\sqrt{2-x}\right)\)+\(\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)\)
<=> 2x = \(\sqrt{2-x}\left(x-\sqrt{2-x}\right)+\sqrt{3-x}\left(x-\sqrt{3-x}\right)+\sqrt{5-x}\left(x-\sqrt{5-x}\right)\)
<=> 2x = x (\(\sqrt{2-x}+\sqrt{3-x}+\sqrt{5-x}\)) - (2-x +3-x + 5-x)
<=> 2x= x.x - 10 +3x <=> x2+x-10 = 0 <=> \(\orbr{\begin{cases}x=\frac{-1+\sqrt{41}}{2}\left(loai\right)\\x=\frac{-1-\sqrt{41}}{2}\left(loai\right)\end{cases}}\) cả 2 nghiệm đều không thỏa mãn \(0\le x\le2\)
=> phương trình vô nghiệm
ò khó quá vì mk mới hc lp 5 à
Giải phương trình:
\(x=\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}..\)
ĐK: \(x\le2\)
pt <=> \(2=2-x+\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}.\)
<=> \(2=\sqrt{2-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)+\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right).\)
<=> \(2=\left(\sqrt{2-x}+\sqrt{3-x}\right)\left(\sqrt{5-x}+\sqrt{2-x}\right).\)
<=> \(2\left(\sqrt{5-x}-\sqrt{2-x}\right)=3\left(\sqrt{2-x}+\sqrt{3-x}\right)\)( vì \(\sqrt{5-x}-\sqrt{2-x}\ne0;\forall x\inℝ\))
<=> \(2\sqrt{5-x}=5\sqrt{2-x}+3\sqrt{3-x}\)
<=> \(4\left(5-x\right)=25\left(2-x\right)+9\left(3-x\right)+30\sqrt{\left(2-x\right)\left(3-x\right)}\)
<=> \(-57+30x=30\sqrt{\left(2-x\right)\left(3-x\right)}\)
<=> \(\hept{\begin{cases}30x-57\ge0\\900x^2-3420x+3249=900x^2-4500x+5400\end{cases}}\)
<=> \(\hept{\begin{cases}x\ge\frac{57}{30}\\x=\frac{239}{120}\end{cases}}\Leftrightarrow x=\frac{239}{120}\)tmđk