Tính nhanh: \(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+....+\frac{1}{1280}\)
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+....+\frac{1}{1280}\)
\(Tínhnhanh:\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+....+\frac{1}{1280}\)
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+........+\frac{1}{1280}\)
\(=\frac{1}{5}+\left(\frac{1}{5}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{20}\right)+.....+\left(\frac{1}{640}-\frac{1}{1280}\right)\)
\(=\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{20}+......+\frac{1}{640}-\frac{1}{1280}\)
\(=\frac{1}{5}+\frac{1}{5}-\frac{1}{1280}\)( Tối giản các phân số cho nhau )
\(=\frac{2}{5}-\frac{1}{1280}\)
\(=\frac{511}{1280}\)
Hãy tính bằng cách hợp lí;\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+......+\frac{1}{1280}\)
Ai đúng mị tick cho
mình cho bạn đó bạn đồng ý nhận lời mời kết bạn từ mình nha!!!!
cho j zậy bạn
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+......+\frac{1}{1280}\)
\(=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\right)\)
\(=\frac{1}{5}\left[1+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{64}-\frac{1}{128}\right)+\left(\frac{1}{128}-\frac{1}{256}\right)\right]\)
\(=\frac{1}{5}\left[1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{64}-\frac{1}{128}+\frac{1}{128}-\frac{1}{256}\right]\)
\(=\frac{1}{5}\left(2-\frac{1}{256}\right)\)
\(=\frac{511}{1280}\)
\(\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}=\frac{1}{x-2}\)
\(\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{128}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10\cdot1}+\frac{1}{10\cdot2}+\frac{1}{10\cdot3}+\frac{1}{10\cdot4}+...+\frac{1}{10\cdot128}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10}\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)=\frac{1}{x-2}\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^6}\)
\(2A-A=2-\frac{1}{2^7}\)
Thay vào biểu thức ta có :
\(\frac{1}{10}\cdot\left(2-\frac{1}{2^7}\right)=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10}\cdot\frac{255}{128}=\frac{1}{x-2}\Leftrightarrow\frac{51}{256}=\frac{1}{x-2}\)
\(\Leftrightarrow51x-102=256\)
\(51x=358\Rightarrow x=\frac{358}{51}\)
Vậy ..................................
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+.........+\frac{1}{1280}?\)
lời giải chi tiết nha , mình đang cần gấp
A = 1/5 + 1/10 + 1/20 + 1/40 + ..... + 1/1280
A x 2 = 2/5 - ( 1 /5 + 1/10 + 1/20 + 1/40 + ... + 1/1280 ) - 1/1280
A x 2 = 2/5 - A - 1/1280
A x 2 - A = 2/5 - 1/1280
A = 2/5 - 1/1280
A = 511/1280
A = 1/5 + 1/10 + 1/20 + 1/40 + ..... + 1/1280
A x 2 = 2/5 - ( 1 /5 + 1/10 + 1/20 + 1/40 + ... + 1/1280 ) - 1/1280
A x 2 = 2/5 - A - 1/1280
A x 2 - A = 2/5 - 1/1280
A = 2/5 - 1/1280
A = 511/1280
\(=\frac{1}{5}+\frac{1}{5}\cdot\frac{1}{2}+\frac{1}{5}\cdot\frac{1}{2^2}+\frac{1}{5}\cdot\frac{1}{2^3}+...+\frac{1}{5}\cdot\frac{1}{2^8}\)
\(=\frac{1}{5}\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)=\frac{1}{5}\cdot2\cdot\left(1-\frac{1}{2}\right)\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)\)
\(=\frac{2}{5}\cdot\left(1-\frac{1}{2^9}\right)=\frac{2\cdot\left(2^9-1\right)}{5\cdot2^9}=\frac{511}{1280}\)
Tính nhanh: \(\frac{ }{\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\frac{1}{80}+\frac{1}{160}}\)
=\(=\frac{1}{5}+\frac{1}{2.5}+\frac{1}{4.5}+\frac{1}{4.8}+\frac{1}{8.5.2}+\frac{1}{8.5.4}\)
\(=\frac{1+1+1+1+1+1}{5+2.5+4.5+4.8+8.5.2+8.5}\)
\(=\frac{6}{5.8}\)
\(=\frac{6}{40}\)
mk trả lời nhanh nhất tích đúng cho mk nhé
\(\frac{1}{5}\)+ \(\frac{1}{10}\)+ \(\frac{1}{20}\)+ \(\frac{1}{40}\)+...+ \(\frac{1}{1280}\)+ \(\frac{1}{2560}\)
Trình bày cách làm hộ mình nhé ^_^
Gọi tổng trên là A
Ta có : \(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+...+\frac{1}{2560}\)
\(2A=2\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{2560}\right)\)
\(2A=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1280}\)
\(2A-A=\left(\frac{2}{5}+\frac{1}{5}+...+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{2560}\right)\)
\(A\left(2-1\right)=\frac{2}{5}-\frac{1}{2560}\)
\(A.1=\frac{1024}{2560}-\frac{1}{2560}\)
\(A=\frac{1023}{2560}\)
Ta có : A = 1/5 + 1/10 + 1/20 + ... + 1/2560
2A = 2 ( 1/5 + 1/10 + ... + 1/2560 )
2A = 2/5 + 1/5 + 1/10 + .. + 1/2560
2A - A = ( 2/5 + 1/5 + ... + 1/1280 ) - ( 1/5 + 1/10 + ... + 1/2560 )
A = 2 - 1 = 2/5 - 1/2560
A.1 = 1024/2560 - 1/2560
A = 1023 = 2560
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+....+\frac{1}{1280}\) làm thế nào
\(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{15}+.....+\frac{1}{1280}\)
\(A=\frac{1}{5}+\frac{1}{5\times2}+\frac{1}{5\times2\times2}+.....+\frac{1}{5\times2\times2\times2\times2\times2\times2\times2\times2}\)
\(A=\frac{1}{5}\times\left(1+\frac{1}{2}+\frac{1}{2\times2}+.....+\frac{1}{2\times2\times2\times2\times2\times2\times2\times2}\right)\)
\(5\times A=1+\frac{1}{2}+\frac{1}{2\times2}+.....+\frac{1}{2\times2\times2\times2\times2\times2\times2\times2}\)
\(10\times A=2+1+\frac{1}{2}+.....+\frac{1}{2\times2\times2\times2\times2\times2\times2}\)
Lấy hiệu :
\(10\times A-5\times A=2-\frac{1}{2\times2\times2\times2\times2\times2\times2\times2}\)
\(10\times A-5\times A=2-\frac{1}{256}\)
\(5\times A=\frac{2\times256-1}{256}\)
\(5\times A=\frac{511}{256}\)
\(A=\frac{511}{256}\div2\)
\(A=\frac{511}{1280}\)
Đặt : \(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+.....+\frac{1}{1280}\)
\(5A=1+\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+.....+\frac{1}{640}\)
\(5A-A=1-\frac{1}{1280}\)
\(4A=\frac{1279}{1280}\)
\(A=\frac{1279}{1280}.\frac{1}{4}=\frac{1279}{320}\)
=\(\frac{1}{1.5}\)+\(\frac{1}{2.5}\)+\(\frac{1}{4.5}\)+...............................................+\(\frac{1}{256.5}\)
ta rut gon con 1-\(\frac{1}{256}\)
=>ket qua la 255/256
luu y : dau . la dau nhan nhe lop 6 moi hoc
Bài 1. Tính giá trị của biểu thức sau:
A=\(\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
Bài 2. So sánh
A=\(\frac{20^{10}+1}{20^{10}-1}\)
B=\(\frac{20^{10}-1}{20^{10}-3}\)
Bài 3.Tính nhanh
P=\(\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}\)
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)