\(\frac{x+y+2005}{z}=\frac{y+z-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\). tìm x,y,z
Tìm x,y,z biết
\(\frac{x+y+2005}{z}=\frac{y+z-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
Tìm X,Y,Z biết:
\(\frac{x+y+2005}{z}=\frac{y+2-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
Áp dụng dãy tỉ số bằng nhau
a)\(\frac{x-1}{2005}=\frac{3-y}{2006}\)và x-y=4009
b)\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x-y-z=28
Tìm x,y,z khi:
1,\(\frac{x}{7}=\frac{y}{3}vàx-24=y\)
2,\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}và,y-x=48\)
3,\(\frac{x-1}{2005}=\frac{3-y}{2006}và,x-y=4009\)
4,\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vã-y-z=28\)
5,\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}và2x+3y-z=-14\)
6,\(3x=y;5y=4zvà6x+7y+8z\)
Tìm x,y,z khi:
a) \(\frac{x-1}{2005}=\frac{3-y}{2006}\) và x-y=4009
b) \(\frac{x}{2}=\frac{y}{3}:\frac{y}{4}=\frac{z}{5}\) và x-y-z=28
c) 3x=y; 5y=4z và 6x+7y+8z=456
a) x-1/2005=3-y/2006
áp dụng tc dãy ts = nhau ta có :
x-1/2005=3-y/2006=(x-1)+(3-y)/2005+2006=x-1+3-y/4011=x-y-1+3/4001=4009-1+3/4011=4011/4011=1
=>x-1/2005=1=>x-1=2005=>x=2006
=>3-y/2006=1=>3-y=2006=>y=-2003
vậy...
c)
3x=y
=>x/1=y/3
=>x/4=y/12
5y=4z
=>y/4=z/5
=>y/12=z/15
=>x/4=y/12=z/15
=>6x/24=7y/84=8z/120
áp dụng tc dãy ts = nhau ta có :
6x/24=7y/84=8z/120 = 6x+7y+8z/24+84+120=456/228=2
=>x/4=2=>x=8
=>y/12=2=>y=24
=>z/15=2=>z=30
vậy ...
Tìm x,y,z biết:
a) x−12005 =3−y2006 và x-y=4009
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) \(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-2}=x+y+z\)
Tìm x ;y;z
a) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow x+y+z=\frac{1}{2}\)(do 1/(x+y+z)=2)
\(\Rightarrow y+z=\frac{1}{2}-x;z+x=\frac{1}{2}-y;x+y=\frac{1}{2}-z\)
Thay vào lần lượt ta có:
\(\frac{\frac{1}{2}-x+1}{x}=2\)\(\Rightarrow x=\frac{1}{2}\)
\(\frac{\frac{1}{2}-y+2}{y}=2\)\(\Rightarrow y=\frac{5}{6}\)
\(\frac{\frac{1}{2}-z-3}{z}=2\)\(\Rightarrow z=-\frac{5}{6}\)
Cho x, y, z khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\).Tính P = (x25 + y25)(y3 + z3)(z2006 - x2006)
1/x + 1/y + 1/z = 1/x+y+z
<=> xy+yz+zx/xyz = 1/x+y+z
<=> (xy+yz+xz).(x+y+z)=xyz
<=> x^2y+xy^2+y^2z+z^2y+z^2x+x^2z+3xyz=xyz
<=> x^2y+y^2x+y^2z+z^2y+z^2x+x^2z+2xyz = 0
<=> (x+y).(y+z).(z+x) = 0
<=> x+y=0 hoặc y+z=0 hoặc x+z=0
<=> x=-y hoặc y=-z hoặc z=-x
Nếu x=-y => x^25 = -y^25 => P = 0
Nếu y=-z => y^3 = -z^3 => P = 0
Nếu z=-x => z^2006 = x^2006 => P = 0
Vậy P = 0
Tk mk nha
Tìm x,y,z:
\(\frac{x-1}{2005}=\frac{3-y}{2006};x-y=4009\)
thks
Từ: \(\frac{x-1}{2015}\)=\(\frac{3-y}{2016}\)=\(\frac{x-1+3-y}{2015+2016}\)=\(\frac{x-y+2}{4011}\)=\(\frac{4009+2}{4011}\)=\(\frac{4011}{4011}\)=1
Do:\(\frac{3-y}{2016}\) = 1 => x=2015
x =2015+ 1
x=2016
\(\frac{3-y}{2016}\)= 1 => y =2016
y=3- 2016
y= -2013
Cho ba số thực x,y,z thỏa mãn: x+y+z=2006 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\)
Chứng minh rằng ít nhất trong ba số x,y,z bằng 2006
ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2006}\) (x;y;z khác 0)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)(vì x+y+z=2006)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{\left(x+y+z\right).z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{\left(x+y+z\right).z}\)
\(\Leftrightarrow-\left(x+y\right)xy=\left(x+y\right)\left(xz+yz+z^2\right)\) (vì x;y;z khác 0)
\(\Leftrightarrow\left(x+y\right)\left(xy+yz+xz+z^2\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y=0 hoặc y+z=0 hoặc z+x=0
mà x+y+z=2006 nên
z=2006 hoặc x=2006 hoặc y=2006
=> đpcm