Tìm n là số tự nhiên để S=\(\frac{6n+1}{2n+5}\)có GTLN
Tìm số tự nhiên n để B= 6n+5 / 2n-1 là số tự nhiên
Answer:
Để B là số tự nhiên thì: \(6n+5⋮2n+1\)
\(2n+1⋮2n+1\Rightarrow3.\left(2n+1\right)⋮2n+1\Rightarrow6n+3⋮2n+1\)
\(\Rightarrow6n+5-\left(6n+3\right)⋮2n+1\)
\(\Rightarrow2⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow2n\in\left\{0;1;-2;-3\right\}\)
Mà ta có: \(2n⋮2\)
\(\Rightarrow2n\in\left\{0;-2\right\}\)
\(\Rightarrow n\in\left\{0;-1\right\}\)
Mà đề yêu cầu tìm n là số tự nhiên \(\Rightarrow n=0\)
tìm số tự nhiên n để 5^(2n^2-6n+2)-12 là số nguyên tố
Câu hỏi của Nguyễn Thị Hồng Linh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo link này nhé!
Tìm các số tự nhiên n để 5^(2n^2-6n+2) -12 là số nguyên tố
Với n là số tự nhiên
Ta có: \(5^{2n^2-6n+2}-12=25^{n^2-3n+1}-12=25^{n^2-3n}.25-12\)
Với \(n^2-3n=n\left(n-3\right)⋮2\)( vì n, n-3 1 trong 2 số sẽ có sỗ chẵn, hoặc chia trường hợp n chẵn và n lẻ để chứng minh nó chia hết cho 2)
Đặt: \(n^2-3n=2k\)
=> \(5^{2n^2-6n+2}-12=25^{2k}.25-12\equiv\left(-1\right)^{2k}.25-12\equiv25-12\equiv0\left(mod13\right)\)
Mà \(5^{2n^2-6n+2}-12\)là số nguyên tố
=> \(5^{2n^2-6n+2}-12=13\Leftrightarrow5^{2n^2-6n+2}=25=5^2\Leftrightarrow2n^2-6n+2=2\)
\(\Leftrightarrow\orbr{\begin{cases}n=0\\n=3\end{cases}}\) thử lại thỏa mãn
Vậy n=0 hoặc n=3
B=6n+5/2n+1. tim số tự nhiên n để B là số tự nhiên
tìm n để A là số tự nhiên:2n+3/n+2-4n-5/n+2+6n+22/n+2
Tìm sỗ tự nhiên n để A=32n-22n+1-6n là số nguyên tố
Tìm số nguyên tố P để 2p + P2 là số nguyên tố
GIÚP MÌNH VỚI!!!
Tìm n thuộc N, để các phân số sau có giá trị là số tự nhiên
a) 3n + 5/ n+1
b) n+13/ n+1
c) 3n +15/ n+1
d) 2n+13/ n-1
e) 3n + 5/ n-2
f) 6n +5/2n+1
a, \(\frac{3n+5}{n+1}=\frac{3\left(n+1\right)+2}{n+1}=\frac{2}{n+1}\)
\(\Rightarrow n+1\in2=\left\{\pm1;\pm2\right\}\)
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b, \(\frac{n+13}{n+1}=\frac{n+1+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
c, \(\frac{3n+15}{n+1}=\frac{3\left(n+1\right)+12}{n+1}=\frac{12}{n+1}\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Tìm số tự nhiên n để B= 52n^2 - 6n +2 - 12 là số nguyên tố
Giúp vs ạ @@
Câu hỏi của Nguyễn Thị Hồng Linh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo cách làm này nhé!