1/1.2+1/2.3+1/3.4+.........+1/14.15+1/15.16
giup minh voi nhanh len nhe minh tick cho nha
so sanh (a+1).(a+2).(a+3)-a.(a+1).(a+2) va 3(a+1).(a+2)
b,tinh
M=1.2+2.3+3.4+...+ 2002.2003
GIUP MINH NHANH LEN NHE CAC BAN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Chứng minh rằng:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}< \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< 1-\frac{1}{2.3}\)
Cần gấp, ai nhanh mik tick nha
Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
Tính tổng:S=1+2+3+...+200
S=1+1/2+1/4+1/8+...+1/1024
S=1.2+2.3+3.4+...+99.100
Giai nhanh giup minh trong 15 phut nhe
số các chữ số đó là
(200-1):1+1=200
số cặp đó là
200:2=100
tổng 1 cạp là
200+1=201
giá trị bt là
201.100=20100
Ta có : \(S=1+\frac{1}{2}+\frac{1}{4}+......+\frac{1}{1024}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+.....+\frac{1}{1024}\)
\(\Rightarrow2S-S=2-\frac{1}{1024}\)
\(\Rightarrow S=\frac{2047}{1024}\)
1/1.2+1/2.3+1/3.4+...+1/x.(x+1)=1
nhanh va chi tiet nhe
ai ket bn voi minh nhanh nhat se dc tick 3 cai voi 2 nich phu va 1 nich chinh
(nhanh tay len nhe 1 nguoi duy nhat va nhanh nhat se dc tick)
cho A=12+22+32+....+152 va B=1.2+2.3+3.4+...+14.15 khi do B-A=?
B = 1.(1+1) + 2.(2+1) + 3.(3+1) +...+ 14.(14 +1) = (12 + 22 + 32 +...+142 ) + (1+2+3+...+14)
=> B - A = (1+2+3+....+14) - 152 = [(1+14).14 : 2] - 225 = -120
tính
S = 1/1.2 + 1/2.3+1/3.4+....+1/9.10
giùm mik với nha ai trả lời thì mik sẽ tick cho
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(S=1-\frac{1}{10}=\frac{9}{10}\)
chứng minh rằng 1/1.2 + 1/2.3 + 1/3.4+ 1/4.5+ ...+1/49.50 <1
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)
Giữ nguyên phân số \(\frac{49}{50}\)
Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)
\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)