chứng minh rằng n2 - n + 2 là số chính phương
Mong các bạn giúp mình với :* cảm ơn nhiều
Chứng minh rằng với mọi số tự nhiên n thì n+1 và n+2 là hai số nguyên tố cùng nhau.
Các bạn cố gắng giúp mình nhé ! Mình cảm ơn nhiều.
Ừ thì do n+1 và n+2 là 2 stn liên tiếp nên chúng luôn phải nguyên tố cùng nhau hoi
chứng minh rằng nếu n là số tự nhiên thì n+1 và 2.n+1 đều là các số chính phương thì n là bội của số 24 . Mọi người giải giúp mình với , mình cảm ơn
Lời giải:
Đặt $n+1=a^2$ và $2n+1=b^2$ với $a,b$ là số tự nhiên.
Vì $2n+1$ lẻ nên $b^2$ lẻ. SCP lẻ chia $4$ dư $1$ nên $2n+1$ chia $4$ dư $1$
$\Rightarrow 2n\vdots 4$
$\Rightarrow n\vdots 2$
$\Rightarrow n+1=a^2$ lẻ. Ta biết SCP lẻ chia $8$ dư $1$ nên $n+1=a^2$ chia $8$ dư $1$
$\Rightarrow n\vdots 8(1)$
Mặt khác:
Nếu $n$ chia 3 dư $1$ thì $n+1$ chia $3$ dư $2$ (vô lý vì 1 SCP chia 3 dư 0 hoặc 1)
Nếu $n$ chia $3$ dư $2$ thì $2n+1$ chia $3$ dư $2$ (cũng vô lý)
Do đó $n$ chia hết cho $3(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $n\vdots 24$ (đpcm)
Vì 2n+1 là số chính phương lẻ nên
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
Chứng minh rằng: Số 11...1(n chữ số 1)-10n chia hết cho 9
Các bạn giúp mình với mình cảm ơn rất nhiều
a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1)
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1
.....
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3)
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1)
= 9.A + n
=>8n + 11111...1= 9A +9n chia hết cho 9
b.11111111....1 (gồm 27 số 1)
= 1111...100.....0 + 11111...10000...0 + 1111...1
-------------------------- ----------------------- -----------
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1
=111111111 x (10^18 + 10^9 +1)
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9)
10^18 chia 3 dư 1
10^9 chia 3 sư 1
=> 10^18 + 10^9 +1 chia hết cho 3
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)
Cho số tự nhiên A gồm 100 chữ số 1 và số tự nhiên B gồm 50 chữ số 2.Chứng minh rằng A-B là một số chính phương. Các bạn giải rõ bài giải hộ mình nhé. Cảm ơn các bạn nhiều.
Các bạn hãy chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2.
Ai nhanh thì mình tik.
Làm ơn giúp mình đi.
Nhớ giải chi tiết nha các bạn.
Cảm ơn các bạn rất nhiều.
Nếu n là số lẻ => n+3 là số chẵn => (n+3) (n+6) chia hết cho 2
Nếu n là số chẵn => n+6 là số chẵn => (n+3) (n+6) chia hết cho 2
=> (n+3) (n+6) chia hết cho 2 với mọi STN n
Một lần nữa xin cảm ơn bạn ( le anh tu ) nhiều .
Thank you very very much .
Kết bạn nhé .
Chứng minh rằng :
3n+3+3n+1+2n+3+2n+2 chia hết cho 6
Các bạn giúp mình bài với . Mình mới lập nick nên mong các bạn giúp đỡ . Nếu ko phiền và ko chê mình thì kb với mình nhé . Bạn nào giải đc thì mình tick cho . Cảm ơn các bạn rất nhiều !
3n + 3 + 3n + 1 + 2n + 3 + 2n + 2
= 3n.33 + 3n.3 + 2n.23 + 2n.22
= 3n.(27 + 3) + 2n.(8 + 4)
= 3n.30 + 2n.12
= 3n.5.6 + 2n.2.6
= 6.(3n.5 + 2n.2) \(⋮\) 6
3n+3+3n+1+2n+3+2n+2
=3n+1.(32+1)+2n+2.(2+1)
=3n=1.2.5+2n+1.3
=3.2.3n.5+2.3.2n+1
=3.2.(3n.5+2n+1) chia hết cho 6
1. CHỨNG MINH RẰNG:
A, VỚI A, B, C, D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0, P NGUYÊN TỐ VÀ AB + CD = P THÌ A , C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮM ( AI NHANH VÀ LÀM ĐÚNG MÌNH CHO 1 TICK NHA ) CẢM ƠN CÁC BẠN NHIỀU
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
khó quá
mình cũng đang hỏi câu đấy đây
Cho n thuộc N*. Chứng minh rằng số A = 111...1 ( n chữ số 1 )2111...1 ( n chữ số 1 ) là hợp số Các bạn giải chi tiết ra giúp mk với nhá mk xem trên mạng nhiều rồi nhưng ko hiểu !
cảm ơn các bạn
Tim số nguyên n sao cho n+2 chia hết cho n-3
Các bạn giúp mình với nhớ trình bày chi tiết lời giải nha ! Cảm ơn các bạn nhiều
[ bạn nào có câu trả lời chính xác và nhanh nhất mình sẽ cảm ơn ]
Ta có
\(\frac{n+2}{n-3}=\frac{\left(n-3\right)+5}{n-3}=1+\frac{5}{n-3}\)
Đẻ n+2 chia hết cho n-2
=>5 chia hết cho n-3 hay n-3 thuộc Ư(5)
=>n-3 thuộc(-5;-1;1;5)
n=(-2;2;4;8)
Nếu bài làm của mình đúng thì tick nha bạn cảm ơn.
Chúc bạn năm mới mạnh khoẻ,vui vẻ,may mắn,học giỏi nha.
Ta có: (n+2) chia hết (n-3) (1)
(n-3) chia hết (n-3) (2)
Từ (1) và (2) suy ra :
(n+2)-(n-3) chia hết (n-3)
n+2-n+3 chia hết (n-3)
5 chia hết (n-3)
tự làm tiếp
(sai thì thôi mk có lòng thì bạn cũng có dạ nên tick nhé cảm ơn)