Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yumi
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 8 2016 lúc 9:39

Ta luôn có : \(\left|x+\frac{8}{5}\right|\ge0\) , \(\left|2,2-2y\right|\ge0\)

Suy ra \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

Do đó : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\) \(\Rightarrow\begin{cases}x=-\frac{8}{5}\\y=\frac{11}{10}\end{cases}\)

Isolde Moria
12 tháng 8 2016 lúc 9:39

Ta có

\(\begin{cases}\left|x+\frac{8}{5}\right|\ge0\\\left|2,3-2y\right|\ge0\end{cases}\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,3-2y\right|\ge0\)

=> \(x,y\in\varnothing\)

Võ Đông Anh Tuấn
12 tháng 8 2016 lúc 9:40

Vì : \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)

\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

Mà theo đề bài : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=1,1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=\frac{11}{10}\end{cases}\)

dễ thương
Xem chi tiết
Minh Hiền
8 tháng 1 2016 lúc 9:16

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

Thùy Ruppi Thạch
8 tháng 1 2016 lúc 9:17

\(y=1,1\)

x=-8/5

Nguyễn Tiến Đạt
8 tháng 1 2016 lúc 21:21

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

Đinh Nguyễn Nguyệt Hà
Xem chi tiết
Lovely Girl
Xem chi tiết
soyeon_Tiểu bàng giải
4 tháng 7 2016 lúc 15:08

\(Do\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(=>\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}=>\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}=>\hept{\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}=>\hept{\begin{cases}x=-1,6\\y=1,1\end{cases}}}}}\)

Vậy x = -1,6; y = 1,1

Ủng hộ mk nha ^_-

chim cánh cụt
Xem chi tiết
Nguyễn Hoàng Ngọc Hân
Xem chi tiết
Phù thủy lạnh lùng
Xem chi tiết
Nguyệt
24 tháng 12 2018 lúc 16:40

\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

\(TH1:x+y+z=0\)

\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)

\(TH2:x+y+z\ne0\)

\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)

sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N 

mà đề là x+y+z khác 0 -.-

Phù thủy lạnh lùng
24 tháng 12 2018 lúc 16:46

cảm ơn nhiều

Hoàng Lê Bảo Ngọc
Xem chi tiết
alibaba nguyễn
28 tháng 11 2016 lúc 16:31

Ta có

\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)

\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)

Tương tự ta có

\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)

\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)

Cộng vế theo vế ta được

\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)

\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)

Dấu = xảy ra khi x = y = z = 2

Nguyễn Công Khôi
28 tháng 11 2016 lúc 21:11

=720vix+y3=56vayx=720

Hoàng Lê Bảo Ngọc
29 tháng 11 2016 lúc 12:10

alibaba nguyễn Đúng rồi! Muốn k cho bạn lắm nhưng không hiểu sao cái nút "ĐÚNG" nó đơ mất rồi :(

Bùi Yến Ngọc
Xem chi tiết
lê duy mạnh
29 tháng 9 2019 lúc 19:52

x^3+3x^2+y^3+5y^2-(x^3+y^3)=0

3x^2+5y^2=0

x=0 và y=0

Lớp 8 nên sử dụng hằng đẳng thức

(=) X3 +3x2 +y3+5y2-x3-y3=0

(