1/1.2.3+1/2.3.4+............+1/18.19.20
1) tính :
a) 2/ 1.2.3 + 2/ 2.3.4 + ...+ 2/ 98.99.100
b) 4/ 2.4.6 + 4/ 4.6.8 + ...+ 4/ 50.52.54
c) 8/ 1.3.5 + 8/ 3.5.7 + ...+ 8/ 18.19.20
d) 1/ 1.2.3 + 1/ 2.3.4 + ... + 1/ 18.19.20
B= 1/1.2.3+1/2.3.4+...+1/18.19.20
1/1.2.3+1/2.3.4+1/3.4.5+...+1/18.19.20
help me please:))))) thanks
Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}$
$2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{18.19.20}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+....+\frac{20-18}{18.19.20}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}$
$=\frac{1}{1.2}-\frac{1}{19.20}=\frac{189}{380}$
$\Rightarrow A=\frac{189}{760}$
CMR : A = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.20 < 1/4
A = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.20
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(A=\frac{1}{4}-\frac{1}{2.19.20}< \frac{1}{4}\)
c/m 1/1.2.3 + 1/2.3.4 + 1/3.4.5 +.......+ 1/18.19.20 < 1/4
B=1/1.2.3+1/2.3.4+.....+1/18.19.20. Chứng minh B<1/4
a chứng minh được bài toán tổng quát sau
2/[(n-1)n(n+1)] = 1/[(n-1)n] - 1/[n(n+1)]
Áp dụng:
ta có 2A = 1/(1.2) - 1/ (2.3) +1/(2.3) - 1/(3.4) + ...+ 1/18.19 - 1/19.20
= 1/(1.2) - 1/(19.20) = [190 - 1] / 19.20 = 189/380
=> A = 189/ 760 < 1/4
Nhận thấy: \(\dfrac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2}{2\cdot n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{2+n-n}{2n\cdot\left(n+1\right)\cdot\left(n+2\right)}\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n-n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{2+n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}-\dfrac{n}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{n\cdot\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\cdot\left(n+2\right)}\right]\)
\(\Rightarrow A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{18\cdot19\cdot20}\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{18\cdot19}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{2}\cdot\left[\dfrac{1}{1\cdot2}-\dfrac{1}{19\cdot20}\right]\\ =\dfrac{1}{4}-\dfrac{1}{760}< \dfrac{1}{4}\)
Vậy \(A< \dfrac{1}{4}\)
Chứng minh rằng: 1/1.2.3+1/2.3.4+1/34.5+.....+1/18.19.20<1/4
tinh nhanh
A = \(\dfrac{1}{1.2.3}\)*\(\dfrac{1}{2.3.4}\)*................................*\(\dfrac{1}{18.19.20}\)