Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Đức Chính
Xem chi tiết
Hattori Heiji
19 tháng 1 2019 lúc 20:12

sai đề bài

Nguyễn Linh Chi
25 tháng 7 2019 lúc 9:47

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

Hùng Quân Mai
Xem chi tiết
volinh
29 tháng 11 2018 lúc 20:12

Tuowgn đương chứng minh: A= \(\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\) không là số tự nhiên.

\(0< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) => n-2 <A<n+1 =<A không phải là 1 số tự nhiên

nguyễn phương thảo
Xem chi tiết
OoO Pipy OoO
8 tháng 8 2016 lúc 17:32

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

nguyễn phương thảo
8 tháng 8 2016 lúc 22:20

ai giải giúp mình bài 2 và bài 3 với

Nguyễn An Quóc Khánh
Xem chi tiết
Nhìn Là Chó
Xem chi tiết
Trà My
9 tháng 7 2017 lúc 8:38

Đặt d=ƯCLN(12n+1;30n+2)

=>12n+1 chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d

=>60n+5 chia hết cho d; 60n+4 chia hết cho d

=>(60n+5)-(60n+4) chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản 

Trà My
8 tháng 7 2017 lúc 23:07

Bài 1:

\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)

\(=\frac{9}{41}-\frac{206}{375}=\)

Trà My
9 tháng 7 2017 lúc 8:31

Bài 2:

\(\frac{6n+99}{3n+4}=\frac{6n+8}{3n+4}+\frac{91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

Để \(\frac{6n+99}{3n+4}\) nguyên thì \(\frac{91}{3n+4}\) nguyên <=> 91 chia hết cho 3n+4

<=>3n+4 \(\inƯ\left(91\right)=\left\{-91;-13;-7;-1;1;13;17;91\right\}\)

<=>3n\(\left\{-95;-17;-11;-5;-3;9;13;87\right\}\)

<=>\(n\in\left\{-\frac{95}{3};-\frac{17}{3};-\frac{11}{3};-\frac{5}{3};-1;3;\frac{13}{3};29\right\}\)

n là số tự nhiên nên \(n\in\left\{3;29\right\}\)

Nguyễn Thị Trúc Mai
Xem chi tiết
Phạm Quốc Cường
12 tháng 9 2018 lúc 20:42

a, Ta có: \(\frac{n^5}{5}+\frac{n^3}{3}+\frac{7n}{15}=\frac{n^5-n}{5}+\frac{n}{5}+\frac{n^3-n}{3}+\frac{n}{3}+\frac{7n}{15}\) 

\(=\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\) 

Chứng minh \(n^5-n⋮5\Rightarrow\frac{n^5-n}{5}\in Z\) 

                   \(n^3-n⋮3\Rightarrow\frac{n^3-n}{3}\in Z\)

\(\Rightarrow\frac{n^5-n}{5}+\frac{n^3-n}{3}+n\in Z\) 

=> Đpcm 

b, Tương tự dùng tính chất chia hết

Nguyễn Duy Khánh
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 15:33

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

Thanh Tùng DZ
1 tháng 6 2018 lúc 15:36

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

Thanh Tùng DZ
1 tháng 6 2018 lúc 15:38

3.

Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)

Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)

Linh_Chi_chimte
Xem chi tiết
vũ tiền châu
26 tháng 12 2017 lúc 18:00

ta có ...=\(\frac{3n^5+5n^3+7n}{15}\)

ta có \(5n^3+7n=n\left(5n^2+7\right)\)

xét n chia hết cho 3 thì \(5n^3+7n⋮3\Rightarrow5n^3+7n+3n^5⋮3\)

xét n không chia hết cho 3 =>\(n^2\equiv1\left(mod3\right)\Rightarrow5n^2\equiv2\left(mod3\right)\Rightarrow5n^2+7⋮3\)

=>\(5n^3+7n+3n^5⋮3\forall n\in Z\)

ta có \(3n^5+7n=n\left(3n^4+7\right)\)

xét n chia hết cho 5 =>\(3n^5+7n+5n^3⋮5\)

xét n không chia hết cho 5 =>\(n^4\equiv1\left(mod5\right)\Rightarrow3n^4\equiv3\left(mod5\right)\Rightarrow3n^4+7⋮5\)

=>\(5n^3+3n^5+7n⋮5\forall n\in Z\)

=>tử chia hết cho 15 => ... là số nguyên (ĐPCM)

Bạch Tuyết
Xem chi tiết