tinhs gttd
Tìm giá trị nhỏ nhất của biểu thức
P=GTTD(x-1)+GTTD(x-2017)+GTTD(x-2018)
Tìm giá trị nhỏ nhất của biểu thức
P=GTTD(x-1)+GTTD(x-2017)+GTTD(x-2018)
\(P=\left|x-1\right|+\left|x-2017\right|+\left|x-2018\right|\)
\(P=\left|x-1\right|+\left|2018-x\right|+\left|x-2017\right|\)
\(P\ge\left|x-1+2018-x\right|+\left|x-2017\right|\)
\(P\ge2017+\left|x-2017\right|\)
Vì \( \left|x-2017\right|\ge0\forall x\in R\) nên \(P\ge2017\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x\ge1\\x=2017\\x\le2018\end{matrix}\right.\Leftrightarrow x=2017\)
Cứu mk tick cho👍
CM bất đẳng thức đẳng thức
Giá trị tuyệt đối của a +GTTD của bé hơn hoặc bằng GTTD của 1+a× b (GTTD của a và GTTD của b bé hơn 1)
a)tìm x biết: 5^x-1 + 5^x-3= 650
b)tìm x biết: gttd x+1 +gttd x+2 +.......+gttd x+100=605x (gttd: giá trị tuyệt đối)
c) tìm x,y biết : (2x+1)/5=(4y-5)/9=(2x+4y-4)/7x
a) \(5^{x-1}+5^{x-3}=650\)
\(\Rightarrow5^x\left(\frac{1}{5}+\frac{1}{125}\right)=650\)
\(\Rightarrow5^x=650:\frac{26}{125}\)
\(\Rightarrow5^x=3125\)
\(\Rightarrow5^x=5^5\)
\(\Rightarrow x=5\)
G=Gttd của X-1-GTTD cua x-4
CHO GTTD CUA X = 5;GTTD CUA Y =11. TINH X +Y
The minimum value of A =gttd cua X +gttd cua X-8
tĩm biet gttd cua gttd cua 3x-3+2x+1=3x+20120
giúp mình với
chứng minh rằng với mọi a,b thuộc q thì gttd của a trừ gttd của b nhỏ hơn hoặc bằng gttd (a-b)
nhanh thì mình tick nha
Mình ghi lại đề nè:
CMR: Với mọi \(a;b\in Q\)thì \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
Nhanh, gọn, lẹ, dễ hiểu :v
Thế thôi :V