tìm số tự nhiên n=3a5b biết n chia hết cho 9 và n chia cho 2 hoặc 5 dư 1
Tìm n = 3a5b biết n chia cho 9 ; 5 và 2 đều dư 1.
Tìm a;b biết 78a9b chia cho 5 và 9 đều dư 2.
Tìm a;b biết 25a4b chia hết cho 4;5 và 9
Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2n
Bài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết cho 9 và x - y = 6 10, 3x74y : hết cho 9 và x - y = 1 11, 20x20x20x : hết cho 7
Bài 3: CMR a, Trong 5 số tụ nhiên liên tiếp có 1 số : hết cho 5 b, ( 14n + 1) . ( 14n + 2 ) . ( 14n + 3 ) . ( 14n + 4 ) : hết cho 5 ( n thuộc N ) c, 88...8( n chữ số 8 ) - 9 + n : hết cho 9 d, 8n + 11...1( n chữ số 1 ) : hết cho 9 ( n thuộc N* ) e, 10n + 18n - 1 : hết cho 27
Bài 4. 1, Tìm các số tự nhiên chia cho 4 dư 1, còn chia cho 25 dư 3 2, Tìm các số tự nhiên chia cho 8 dư 3, còn chia cho 125 dư 12
giúp tui với
tui đang cần lắm đó bà con ơi
em mới lớp 5 seo anh gọi em là: BÀ CON
chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp là 1 số chia hết cho 5
tìm số tự nhiên n biết 67:n dư 7 và 93 chia cho n dư 9
5 số tự nhiên đó có dạng: a + a+1+a+2+a+3+a+4 = a x 5 + 10 = 5 x (a+2)
Vậy tổng số số tự nhiên liên tiếp luôn luôn chia hết cho 5
a biết thương là 3 số chia là 7 và số dư là 5 tìm số bị chia x ?
b biết thương là 5 số chia là 9 số dư là 0 tìm số bị chia y?
c biết số tự nhiên n chia hết cho 2 hãy tìm số n theo số chia 2 và thương là k?
d biết số tự nhiên m chia hết cho 3 hãy tìm số m theo số chia 3 , thương là p và số dư
a) Số bị chia là:3x7+5=26
b) Số bị chia là:5x9+0=45
1. Tìm số tự nhiên n và chữ số a biết : 1+2+3+4+.......+n = aaa
2.Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 và chia hết cho 11
1+3+3+...+n=aaa
=> n(n-1):2=a.111
=>n(n-1)=a.222=a.3.2.37
=> n(n+1)=a.6.37vì n(n+1) là 2 số tự nhiên liên típ = > a.6 và 37 là 2 số tự nhiên liên tiếp và a.6 chia hết cho 6 =>a.6=36<=>a=6=> n=36
vậy..............
?????????????????????????????????????????
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
1. dùng 9 chữ số 1;2;3;....;9 viết tất cả các số tự nhiên có 9 chữ số nhau. hỏi các số lập được có chia hết cho 3; cho 9 không ? vì sao
2. tìm tập hợp các số tự nhiên n chia hết cho 2 và cho 5 biết 32 bé hơn hoặc bằng n bé hơn hoặc bằng 62
bài 1.Tìm số tự nhiên x biết rằng: x + 15 chia hết cho x + 2.
bài 2. Cho C= 1 + 3 + 32 + 33 +... + 311.Chứng minh rằng: a/ A chia hết 13 b/ A chia hết cho 40
bài 3. Chứng tỏ rằng: a/ 109 + 2 chia hết cho 3 b/ 1010 _- 1 chia hết cho 9; c/6100 - 1 chia hết cho 5 ; d/ 2120 - 1110 chia hết cho 2 và 5.
bài 4. Tìm số tự nhiên n biết 288 chia n dư 38 và 414 chia n dư 14.
bài 5. Tìm số tự nhiên a lớn nhất thỏa mãn 543; 3567 đều chia cho a dư 3,
bài 6. Tìm số tự nhiên nhỏ nhất chia 3 dư 1, chia 5 dư 3, chia cho 7 dư 5.
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
1. Tìm số tự nhiên nhỏ nhất chia hết cho 7 và khi chia cho 2,3,4,5 và 6 luôn có số dư là 1.
2. Tìm tất cả các số tự nhiên n sao cho
a) n chia hết cho 9 và n+1 chia hết cho 25
b) n chia hết cho 21 và n+1 chia hết cho 165
c) n chia hết cho 9, n +1 chia hết cho 25 và n+2 chia hết cho 4
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
1. n = 301
2.a) n = 99
b) không có
c) n = 774