chung minh rang
1/1x2+1/3x4+1/5x6....+1/49x50=1/26+1/27+1/28....+1/50
Chứng minh rằng :\(\frac{1}{2}+\frac{1}{3x4}+\frac{1}{5x6}+.....+\frac{1}{49x50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\) [chú ý x là dấu nhân]
Cho biểu thức A= 1/1x2 + 1/3x4 + 1/5x6 + ....... + 1/49x50
A= \(\dfrac{1}{1x2}\)+ \(\dfrac{1}{3x4}\)+\(\dfrac{1}{5x6}\)+......+ \(\dfrac{1}{49x50}\)
Tổng của A bằng bao nhiêu?
Chứng minh rằng :
\(\frac{1}{1x2}\) + \(\frac{1}{3x4}\) + .... + \(\frac{1}{49x50}\)= \(\frac{1}{26}\)+ \(\frac{1}{27}\)+....+ \(\frac{1}{50}\)
\(\frac{1}{1x2}+\frac{1}{3x4}+....+\frac{1}{49x50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)+\left(-\frac{1}{2}-\frac{1}{4}-.....-\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}......+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+......+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)
Thực hiện phép tính :
a, 1+(1+2)+(1+2+3)+...+(1+2+3+..+100)
b,1/1x2+1/3x4+1/5x6+...+1/49x50
3.Tính nhanh
a.A= 1/3x4 + 1/4x5 + 1/5x6 + 1/6x7 +... +1/49x50
b.B=3/1x2 + 3/2x3 + 3/3x4+...+ 3/19x2
c.C=1/1x3 + 1/3x5 + 1/5x7 + 1/7x9 +.... + 1/19x21
Mong các bn giúp mk giải nhanh và đúng bài này nhé
c)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{20}{21}\)
\(=\frac{10}{21}\)
\(A\)= \(\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\)\(\frac{1}{3}-\frac{1}{50}=\frac{50}{150}-\frac{3}{150}=\frac{47}{150}\)
a)
\(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{49.50}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{3}-\frac{1}{50}\)
\(=\frac{47}{150}\)
b)
\(B=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{19.20}\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=3.\left(1-\frac{1}{20}\right)\)
\(=3.\frac{19}{20}\)
\(=\frac{57}{20}\)
A=1/1x2+1/3x4+1/5x6+...+1/49x50
Chứng minh rằng A<1
Lời giải:
$A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{25.26}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{26-25}{25.26}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{25}-\frac{1}{26}$
$=1-\frac{1}{26}< 1$ (đpcm)
a = 1\1x2+1\2x3+1\3x4+........+1\49x50
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức trên, ta có
\(\frac{1}{1.2}=\frac{1}{2-1}.\left(1-\frac{1}{2}\right)\)
\(\frac{1}{2.3}=\frac{1}{3-2}.\left(\frac{1}{2}-\frac{1}{3}\right)\)
............................................
\(\frac{1}{49.50}=\frac{1}{50-49}.\left(\frac{1}{49}-\frac{1}{50}\right)\)
\(A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)
chắc chắn bạn ạ, ai thấy đúng hì ủng hộ nha
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{50}=\frac{49}{50}\)\(\frac{49}{50}\)
A = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{49\times50}\)
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
A = \(\frac{1}{1}-\frac{1}{50}\)
A = \(\frac{50}{50}-\frac{1}{50}\)
A = \(\frac{49}{50}\)
A=1/1x2+1/2x3+1/3x4+.....+1/49x50
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Vậy \(A=\frac{49}{50}\)
Chúc bạn học tốt ~
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1/1 - 1/50
= 49/50
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
k mk nha
thanks